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FOREWORD

During the six years that this contract with the Air Force Office of

Scientific Research has been in effect, some spectacular developments in

quantum electronics have taken place. In 1956, while the first draft of the

technical proposal was in preparation, the term "quantum electronics" had

not yet been coined. The stated purpose of the proposed program was merely

to carry out some basic investigations of chemical and lattice defects in

crystalline solids, using electron spin resonance as the tool.

By the end of 1956, however, Bloembergen's suggestion of the solid-state

maser became very widely known, and a short time later the feasibility of the

suggestion was reported by Scovil, Feher, and Seidel of the Bell Telephone

Laboratories. At the Lincoln Laboratory, McWhorter and Meyer discovered maser

action in chrome cyanide around the middle of 1957, and on December 20, 1957,

the workers at The University of Michigan Willow Run Laboratories observed

maser action in pink ruby.

Development of the ruby maser as a device took place very swiftly. Dur-

ing these months after the discovery of maser action in ruby, Townes and

Giordemaine, using a tested pink ruby crystal that had been supplied by The

University of Michigan workers, announced the successful operation of the

radiotelescope maser at the Naval Research Laboratory. A similar device was

built later for The University of Michigan radiotelescope. More recently,

the ruby maser was used by the workers at the Jet Propulsion Laboratory for

the precision determination of the Astronomical Unit (149,589,500 m). At

xi



the same laboratory, a program evaluating the use of ruby masers for satellite

communication is in progress, and it is well known, of course, that a ruby

maser is part of the Telstar communication system.

The pink ruby, which previously had been used primarily for phonograph

needles, was very soon found to have another important application in a de-

vice now popularly called the laser. Soon after theoretical suggestions were

offered by Schalow and Townes, T. H. Maiman of the Hughes Research Laboratory

and Collins and his co-workers at the Bell Telephone Laboratories reported

the predicted phenomenon.

The program carried out under -this AFOSR contract is a classical example

of the importance of basic research in technological developments. As men-

tioned earlier, our initial objective was merely to explore the uses of elec-

tron spin resonance as a tool to study defects in hard crystalline materials,

to which only limited attention had been paid at that -time. It was this pro-

gram that led this principal investigator to examine the merits of such mate-

rials as ZnS, MsO, CaCo3 , and A1203 as maser materials, and thus to the ob-

servation of maser action pink ruby.

The technological developments in masers and lasers have in turn already

raised a number of questions, the answers to which can ,.ome only from more

intensive basic investigations. One such question is the very old one of en-

ergy transfer and transformation mechanisms in solids. We have noticed -that

the mechanism invoked to explain laser action in solids is different from

that needed for luminescence and scintillation phenomena. A program to study

these phenomena has been started, with the hope of gaining deeper insight

xii



to energy conversion processes in solids.

In bringing this contract to a close, I wish to thank Mr. Charles F.

Yost, now of the Advanced Research Projects Agency, and the various members

of the Air Force Office of Scientific Research for the generous support that

made our work on the ruby maser at Willow Run possible, and for the continua-

tion of the program to introduce these solid-state concepts and techniques

into the research programs of the Department of Nuclear Engineering.

Chihiro Kikuchi

December, 1962

xiii



PART I

PROPERTIES OF RUBY AN~D OTHER SAPPHIRES

by

C. Kikuchi and S. Karavelas



I. INTRODUCTION

For centuries ruby has been highly prized as a gem, but it is only very

recently, since the discovery of maser action in ruby, that the industrial

importance of this material has come to be appreciated. Before 1957, the

Linde Company was the principal supplier of ruby and sapphires. The so-

called pink ruby was manufactured by this company to make the so-called sap-

phire phonograph needles.

The present surge of interest in ruby and related materials stems from

the fact that ruby has been shown to be useful as a maser and laser material.

Maser, an acronym for Microwave Amplification by Stimulated Emission of Radia-

tion, is a low-noise, high-gain amplifier, for which ruby is the critical

1
material. The ruby maser was used in the Telstar communication system, and

at the California Technology Jet Propulsion Laboratory a packaged ruby maser

for satellite tracking stations is under e'valuation. In scientific applica-

tion, the ruby maser made possible the precision measurement of the Astro-

nomical Unit, the average distance of the earth from the sun. The precision

value of 149,589,500 ± 500 km was obtained by the workers at the Jet Propul-

sion Laboratory, after making careful analysis of the radar echo from Venus.
2

Ruby is also used in lasers, a device for the generation of intense

coherent optical radiations. The word Laser is an acronym for Light Ampli-

fication by Stimulated Eknission of Radiation. The industrial and techno-

logical uses of this device are still under research and development. It is

possible that the device will find applications in communication systems

3



operating at optical frequencies, and in certain industrial processes such

as micro-cutting, micro-etching, and micro-welding. It also seems to be use-

full as a medical tool-in coagulating a detached retina onto the eyeball,

for example.

A great deal has been said about the usefulness of ruby as a maser and

laser material, but few popular expositions attempt to explain why ruby is

useful. Consequently, it will be the purpose of this discussion to point

out the factors that make ruby behave the way it does.



II. CRYSTAL STRUCTURE

Chemically, ruby is aluminum oxide which contains a small concentration

of chromium. Aluminum oxide occurs in two forms; the one that concerns us is

known as a-A 2 0s. In mineralogy, this form is called corundum, and the com-

mercial name of synthetic corundum is sapphire. The commercial sapphire,

which is clear, transparent, and colorless, should not be confused with the

gem sapphire, which is blue. (In passing, perhaps it should be noted that

the technological importance of sapphire is beginning to be realized. For

example, according to a recent NASA report, sapphire windows will henceforth

be used on satellite solar batteries. Also, sapphire has the very unusual

property of high thermal conductivity but low electrical conductivity, in

contradiction to the Weidemann-Franz law, which asserts that good electrical

conductors are also good thermal conductors. This particular property is

used in the laboratory to provide good thermal contact and good electrical

insulation.)

There are several varieties of rubies, distinguished by their colors.

Gem rubies are deep red, due to the high chromium concentration, whereas the

rubies important for masers and lasers are pink, due to the chromium con-

centration of 0.1% or less.

The crystal structure of sapphire is rather complicated. 3 ' 4 It can be

conveniently generated by placing A1203 molecules at the corners of a cube

and stretching the cube along one of the body diagonals. Another A 2 0 3 ,

rotated 1800 about the molecular axis with respect to the first molecules, is

5



placed at the center of this distorted cube. Upon careful examination of

this structure, it will be seen that each Al atom is sandwiched between two

groups of three oxygens, as shown in Fig. 1. The three oxygens are in a

At
46027'

Oq 1.37A

Fig. 1. Coordination of Al atom in c-Al203 .

plane about 1.37 from the Al site, and the Al-O distance is about 1.98X, mak-

ing an angle of 46027 ' with the crystal c-axis. The other three oxygens lie

in a plane O.80A away; the Al-O distance is about 1.84A and the angle 64010.

The relative orientations of the two oxygen triangles are not quite 1800. If

the oxygens are projected on a horizontal plane, the result shown in Fig. 2

is obtained.

6



Al

Fig. 2. Projection of oxygens on horizontal plane.
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III. ENERGY-LEVEL DIAGRAM

Our next task is to analyze the effect of the six nearby oxygens when

an impurity ion such as V2 + , Cr 3 + , or Mn4+ is substituted for Al. These

three ions are cited because each has the 3d3 configuration, so that energy-

level diagrams of all three have many qualitative features in common. In

most theoretical analyses, the assumption is made that the ion consists of

an inert inner ion core (the argon core) and that the electronic properties

of the ions are determined by the three electrons in the outer unfilled 3d

shell. The validity of this assumption has been questioned recently, but for

the present discussion we shall assume the existence of such inert inner

filled electron shells.

Earlier, it was emphasized that the crystal structure of sapphire is

complex. To make theoretical analysis somewhat tractable, it is generally

assumed that the oxygens give rise to a crystalline electric field which has

predominantly cubic symmetry but which also has a small component of tri-

gonal symmetry. Such a crystalline electric field can arise if we first

imagine that the oxygens are placed at the center of the faces of a cube

surrounding the impurity ion, and then imagine a small distortion produced

by stretching the cube along the body diagonal. If these assumptions are

made, we can first take into account the effect of the cubic component of

the crystalline electric field, and later consider the perturbation o2 the

cubic-field energy levels by the small trigonal field.

8



The details of this quantum mechanical calculation is somewhat involved,

but the general qualitative features of the energy-level diagram can be pre-

dicted readily from group theory. We are concerned with what is called the

crystal-field spectra, i.e., the spectrum which arises from electrons making

transitions within the 3d shell. For a cubic field, the energy-level diagram

would be as shown in Fig. 3:5

4
T,

2T2

(4oo)
4T2 B

(475oA)
2
T,

2
E

U

(5560)

R
(6930A11)

Fig. 3. Energy-level diagram for cubic field.

The numerical values given for the wavelengths of the emitted and/or absorbed

radiation are for ruby. For the other two isoelectric ions, V+ and Mn4 +

9



the wavelengths would be slightly different.

If we next take the trigonal crystalline electric field into account,
6

each of the indicated levels will split into two or more levels. The 2 E

level will split into two levels; the separation in ruby, for example, is

about 29 cm 1 , as shown in Fig. 4.

2A2E /

R,

R2  (14,418 cm-1)

(14,447 cm-)
/

4PA
2

Fig. 4. Split in 2 E level by trigonal field.

This results in the splitting of the R line into two components, referred to

in the literature as the R, and R2 lines. The former is the ruby laser line.

The ground state also splits, as indicated in Fig. 5.

/P'

'0.38 cm "

Fig. 5. Split in ground level.
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The separation of the levels in this case is very small, only about 1/100

that of the 2 E state. But this very small splitting is important in the

ruby maser.

11



IV. PROPERTIES OF OTHER 3d 3 IONS

In the preceding section a few of the properties of Cr3 + in sapphire

were described. The next question that arises is whether or not it is pos-

sible to fabricate other materials which have similar properties. To answer

this question, a brief discussion of V2 + and Mn4+ will be presented. The

results for Mn 4 + were published very recently by S. Geschwind and others at

the Bell Telephone Laboratories.7 These results along with properties for

V2 + and Cr3 + are summarized in Fig. 6.

V2 + Cr Mn4 *

80cm
18,00C -1 29 cm -

Il 18000cm21,000cm

I14A400 cm' 4,800cm 2

I /

I ?/,

.C .38cm 39C

tZta 3.4 ms t.m

Fig. 6. Properties of V, j and Mn4 +.
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The measured values of Mn4 + are:

R2  = 14,866 cm'- (79 0 K)

R, = 14,786

2D = -.3914

g1 -g1  1.9937

IA 11 I IALt = 70.0 x l0 - 4 cm 1

There are several interesting facts to note. In the first place, the R, lines

are very nearly equal. Another very remarkable fact is that the results for

Mn4 + in sapphire are very close to those of Mn4+ in lithium titanate. In a

paper by Lorenz and Prener 8 the values % = 67 9 0X (14,700 cm- 1) and t = 1.1 ms

are reported. The values for the ground-state splitting are not known, be-

cause the measurements were made on a powder. The very close agreement of

the numerical values for sapphire and lithium titanate, despite the apparent

differences in the host crystal material, stems from the fact that coordina-

tion for Mn4+ is octahedral; i.e., in both cases the Mn4+ ion is bonded to

six nearby oxygens.

The work on V2 + in sapphire was started in our laboratory when it was

noticed that V2 + is produced by X-rays.9 Our experiments showed that normally

vanadium in sapphire is present as V3 + , but that after irradiation, part of

this converted to V2+. The chemical impurity responsible for the stabiliza-

tion of V+ is not yet known. For Mn4 + in both sapphire and lithium tetanate,

the presence of Mg impurity is needed.

Vanadium is a favorable system to investigate because it is essentially

100% V51 , and because its nuclear magnetic moment is rather large, due to

13



the fact that vanadium has an odd-proton-even-neutron nucleus. The nuclear

magnetic moment can then be used as a signature to identify vanadium, and for

this reason vanadium can be quite easily identified in the different oxida-

tion states in sapphire.

With these preliminary remarks, let us return to the ruby energy-level

diagrams given in Section III. As mentioned before, the paramagnetic ion in

ruby is Cr3 + , whose electron shell structure is 1522522p 6 3523p6 3d3 . The three

3d electrons in the last unfilled shell are the electrons responsible for the

interesting microwave and optical properties of Cr3+. (It should be noted

that V2 + and Mn4+ have the same electron shell structure, so that the com-

ments about to be made are applicable to the three ions V+, Cr3+, and Mn 4+.)

It was mentioned earlier that the chromium ions, occupying the Al sub-

stitutional sites, are surrounded by six oxygens. The question we now wish

to answer is: What effect will these oxygens have upon the Cr3+ energy levels?

Since the actual arrangement of the oxygens is quite complex, to make the

analysis more tractable we shall first assume that the effects of the oxygens

come predominantly from the octahedral arrangement of the oxygens. In other

words, for the first step in the analysis we shall assume that, with the Cr
3 +

ion at the origin of the coordinate system, the oxygens are located along the

coordinate axes at the same distance from the origin. Later we shall con-

sider the effects of a small distortion along the body diagonal.

Perhaps the graphical representation in Fig. 7 will make the physical I
problem clearer. I

1
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I

Iy

x

S2 1

Fig. 7. Octahedral coordination.

Electrons 1, 2, and 3 are moving in the spherically symmetric coulomb

field of +6 e. Each electron has orbital and spin angular momentum li and si

respectively. There are mutual coulomb repulsive forces among the electrons,

and the negative charges located along the coordinate axes will also have an

important influence on the motion of the electrons.

The problem indicated here is a complicated one; consequently it will be

necessary for us to make a series of approximations. In order to avoid the

complexities of theoretical arguments, we shall first consider the case of a

single 3d electron, and shall then show how additional factors have to be

brought into the analyses as we proceed to the 3d2 and the 3d3 cases.

The case of the single 3d electron will be dealt with in great detail in

order to bring out many features of the theoretical techniques. The single

15



3d electron is in the central spherical symmetric coulomb field, but its orb-

ital motion is profoundly affected by the oxygens surrounding it. Further-

more, the electron has orbital and spin angular momentum, so that the coup-

ling of these vectors will affect the electron energy level. The Schroedinger

equation we need to solve is

H* = E* (4-1)

with

- -2m + V(r) + Fc(X 4 +y4 +Z4- 2 r4 ) + Ft(xy+yz+zx) + I .S (4-2a)
4J=-2m5

10
The full trigonal part of the Hamiltonian up 

to fourth power is

Vtr = Ft(xy+yz+zx) + Fr[xyz(x+Y+Z) - 1 ra(xy+yz+zx)]

+ Ft(x+y+z) + Ft xyz + Ft [x3+y3+z3- 2 r2 (x+y+z) ] (4-2b)

if the approximation is made that the symmetry of the Al3+ or Cr3 + site is

Csv. This is equivalent to neglecting the angle of 4*22 ' shown in Fig. 2.

In the following discussion we restrict ourselves to the form (4-2a) for the

sake of simplicity. However, one important characteristic of (4-2b) must be

kept in mind, namely, that it has no center of inversion. This is important

when selection rules for electric dipole transitions are examined.

There are three steps to the Schroedinger equation, as follows:

I. 2 V2 + V(r) + Fc(x 4 +y4 +z - r 4 )

2m c5
I2

II. - V + V(r) + Fc(x 4 +y 4 +z 4 - r 4 ) + Ft(xy+yz+zx)
5

III. 2 + V(r) + Fc(x 4 +y 4 +z 4- 3 r 4 ) + Ft(xy+yz+zx) + %I S

2m. 5

16



The purpose of Step I will be to show how the symmetry properties of the

Hamiltonian can be exploited to construct wave functions, and also to point

out the physical reasons for the importance of group theory in attacking these

problems. Consider then the first three terms in (4-2a), i.e.,

- " E2 V2 + V(r) + Fc(x 4 +y4+z4- 2 r4 ) (4-3)
5

We notice that the first two terms are invariant under all rotations, finite

or infinitesimal. Consequently, as is well known, if the last term were

absent, the solution of the Schroedinger equation could be represented by the

spherical harmonics. The corresponding energy levels are called the s, p, d,

etc., states. The mathematical significance of this remark is that the wave

functions belonging to a particular energy level can be represented by poly-

nomials of x, y, and z which transform among themselves under infinitesimal

rotations. For example, the wave functions for the d-electron can be repre-

sented either by the set of spherical harmonics of degree 2-YM2, m = 0, ±1,

-+2-or by the polynomials xy, yz, zx, x2 -y2 , 3z2-r2 .

But what happens if the symmetry of the Hamiltonian is lower? For ex-

ample, in (4-3), the Hamiltonian is invariant under the simple substitution

of ±x, ±y, ±z among themselves, but not under infinitesimal rotations. In

the latter case,

x -- x -CY

y- y + Ey (4-4)

and polynomials in mixed powers of x and y are generated.

17



However, the Hamiltonian is invariant under a group of transformations

called the cubic group. This is the group of operations that carry a cube

into itself. Let us see how we can make use of the Hamiltonians invariance

under the cubic group to generate wave functions belonging to the same energy

level. For this, we need to recall that if * is a wave function belonging

to the energy level E of

= E* (4-1)

and if Rg is one of a group of transformations that leaves the Hamiltonian un-

changed, i.e.,

Rg(H*) = H(Rg*) (4-5)

then the set of functions Rg* generated by the group of operations Rg are

also solutions belonging to the same energy level E. To illustrate the phys-

ical significance of this result, let us examine the effect of the cubic

crystalline electric field upon the 3d electrons. As mentioned earlier, the

3d wave functions can be represented by the five linearly independent mon-

omials of the second degree: xy, yz, zx, x2 -y2 , and 3z2 -r2 . Consequently,

let us suppose that

f(r)xy (4-6a)

is a solution of (4-1) belonging to E. Since f(r) is a function independent

of the angle, in order to exhibit the angular dependence hereafter we shall

write simply

xy (4-6b)

instead of f(r)xy. According to the comment made earlier, if Rg is an opera-

18



!
tion of the group then other solutions can be generated by the operation. For

example, (4-3) does not change if the substitution

x -- x

y- z

z- >-y (4-7a)

is carried out. Geometrically, this corresponds to a 900 rotation about the

x-axis. Carrying out this substitution on (4-6b) we obtain

xz (4-6c)

Another possible substitution is

x - z

y---- y

z -- x (4-7b)

Geometrically, this represents a reflection on a diagonal plane passing through

the y-axis. Applied to (4-6b) this operation yields

yz (4-6d)

which along with xy and zx belong to the same energy level E. Also, it is

clear that for the rest of the substitutions that carry a cube into itself,

the functions xy, yz, and zx, will transform among themselves, but that at

no time will they transform into x2 -y2 and 3z2 -r2 . But since these last two

polynomials will transform among themselves, they belong to another energy

level.
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V. TRIGONAL FIELD AND SPIN-ORBIT COUPLING

In the last section it was shown how symmetry properties can be used to

show that the 3d electron will split into two energy levels, with 2- and 3-

fold degeneracy respectively. In order to bring out other properties, we

shall consider the trigonal case in detail. A detailed discussion of this

case is possible because there are only six operations involved.

As mentioned earlier, the six oxygens in sapphire form a distorted cube.

This can be realized by distorting the cube along one of the body diagonals.

If this is done along the [111] body diagonal (see Fig. 8), the additional

term Ft(xy+yz+zx) shown in (4-2a) appears in the Hamiltonian. What effect

will this term have upon the energy levels? In particular, we shall consider

the effect of such a distortion upon the energy level associated with the

functions xy, yz, and zx, or some suitable linear combination of these func-

tions.

Fig. 8. Cube with [111] body diagonal.

According to the above comments, we need to look for the group of sub-

stitutions or operations that leaves the Hamiltonian unchanged. Clearly the
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Hamiltonian

V2 + V(r) + FC(x 4 +y 4 +z 4 - 1 r4 ) + Ft(xy+yz+zx) (5-1)
2m5

will be invariant for substitutions that leave Ft(xy+yz+zx) unchanged; and

these will be:

x--4 x

E: Y--> Y (5-2a)

z-- z

x--4 y x-- z

c( l) z ( 2) - x (5-2b)

z- x z y

x --- > x x --- 4 z x -__> y

(2) (3) ~ 4r(l Y y--4- z a(2) y ---- > y a~3 y-- x
(5-2c)

z -- 4 y z- x z --- z

Substitution (5-2a) is the identity operation; substitutions (5-2b) represent

1200 and 2400 rotations about the [111] body diagonal, and substitutions

(5-2c) represent reflections in the three face diagonal planes.

From the set of functions xy, yz, and zx we note that the function

xy + yz + zx (5-3)

can be constructed. Clearly, this function transforms always into itself

under the operations indicated in (5-2). Physically this means that one of

the three functions will split off due to this trigonal field. To construct

the remaining two linearly independent functions consider the geometrical

procedure shown in Fig. 9a.
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k(i) Ky

j+j+k ~~+K

~ zy

-- j(Y) zy

(a) (b)

Fig. 9. Geometric constructions of linearly independent

functions (simplified).

The plane normal to the vector i+J+k intersects the xy plane along AB, so that

a vector in this direction can be written

-i + 1 (5-4)

Referring to Fig. 9b, this suggests the corresponding function

-yz + zx (5-5)

The vector normal to -i+ and i+j+k is given by

/i~~ +/.j_.

A

Ilee 
(+- 2 k)

Fig. 10. Geometric constructions of linearly independent functions.
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i j k

-1 1 0 i + j - 2k (5-6)

1 1 1

so that the combination

yz + zx - 2xy (5-7)

is suggested. We shall now verify that the functions of (5-5) and (5-7) trans-

form among themselves for the substitutions (5-2) and we shall furthermore

construct the matrices representing the operations of (5-2). If we let

f, =-yz + zx

f2 yz + zx - 2xy (5-8)

then E carries f, into f, and f2 into f2 . Consequently the representative

matrix is

M( E) =I0 ) (5-9)

Consider next Cl). In this case

f 1  -zx + xy = f2
2 1

f2 -- zx+xy-2yz = f ff 2  (5-10)

so that the matrix representation is

1 1

M (Cvl - -~ 1 5-

2 2/
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Similarly,

fliY Y fl + i f2. 2 1)
c 2) : 31 1 M 2 _ 51a

f 2 --- > xy+yz-2zx = - 2 3 3 1 2 22

1): -zy+yx = 2 - 2 - 2
f(1) - f2 ~cv (5-12b)

f 2 -- zy+yx-2xz= fl - f f 2 1/

1 1 3 (5-12c)

f2 xy+xz-2yz = f, - f2 3 2

(2 2

,(3)= (5-12d)
f2-* xz+yz-2xy = f2

Earlier we showed that when a suitable linear combination of xy, yz, and

zx, namely

xy + yz + zx (5-3)

is taken, this function is such that it always transforms into itself under

the operations of (5-2). The following question now arises: Is it possible

to construct some linear combination of f, and f2 of (5-8)-say g, and g2 -

such that g, will always transform into itself and g2 into itself? The

answer to this question is no; it is provided by group theory and stems from

the fact that the set of numbers obtained by taking the diagonal sum of the

matrices is identical to the row of numbers in the group character table.

The character table for the C3v group, with which we are concerned here,

is as follows:

24



E 2C3  3oV
A1  1 1 1

A2  1 1 -i

E 2 -1 0

The symbols appearing at the top of the column represent the symmetry opera-

tions, and the numbers in the column below give the trace or the diagonal sum

of the representative matrix. The numbers under E give the dimensionality

for the so-called irreducible representations A1, A2 , and E. (The maxtrix

representing the symmetry operations A1 and A2 are l-x-1 matrices, whereas

those for E are 2-x-2 matrices.)

Clearly, then,

xy + yz + zx (5-3)

transforms like A,.

If, next, the last term in (4-2a) is taken into account, the transforma-

tion properties of the spin functions have to be considered. The appropriate

character table is the one for the double C3v group, which is as follows:

E R 2C3  2C 3 R 3 av 3 vR

A, 1 1 1 1 1 1

A2  1 1 1 1 -1 -1

E 2 2 -i -i 0 0

1 2 -2 1 -l 0 0

2 fl -i - 1 i -i
Vl -i -i 1 -i i
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It can be shown that the spin functions for S = 1/2 transforms like E. Figure

11 shows how the energy levels split upon introducing the perturbations in

(4-2a) in succession in the indicated order.

Spherical Cubic Trigonal Spin-Orbit

()(2)E 27-

/
/

/
/

/
/

\//

\, ____ ___

- -

(22

Fig. 11. Split in energy levels upon introduction of perturbations.
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VI. CHARACTER TABLE

In the previous section, we mentioned such terms as character table, ir-

reducible representations, etc., without adequate explanation. Here we shall

discuss these concepts in greater detail, with particular reference to the

cubic group. A clear-cut understanding of the character table is necessary

before we can proceed to the two-electron 3d2 and three-electron 3d3 config-

urations. We shall present a discussion of what is meant by the character

table, point out some of the important properties, and show how this table

can be used. Perhaps it should be emphasized that the character table is

somewhat like the multiplication table; if we know how to use the table, we

can use it to work out multiplication problems!

Consider, then, the group character table for the cubic group:

E 8C3  3C2 6c bC 4

A, 1 1 1 1 1

A2  1 1 1 -i -1

E 2 -i 2 0 0

T, 3 0 - -1 1

T2 3 0 -1 1 -1

The symbols across the top of the table represent the different classes of

symmetry operations and the number in front of the symbols gives the number

of operations belonging to that class. A "class" of operations is a set of

similar operations and can often be obtained more or less intuitively. For
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exsmple, for the group of operations that carry a sphere into a sphere, all

rotations of a given angle independent of the axis of rotation belong to the

same class. For the cubic group, there are the set of rotations about the

body diagonals. The two rotations of 1200 and 2400 about a body diagonal

will carry a cube into a cube. Since there is a total of four body diagonals,

we might intuitively guess that all eight such operations belong to the same

class. In the above table, the rotations about the body diagonals are in the

class C3. As another example, consider C2 , the class of 1800 rotations about

the coordinate axes. Since there are three axes, we should expect three op-

erations in class C2, as indicated in the table. Class CL comprises the set

of 1800 rotations about the face diagonals, and C4 the class of 900 rotations

about the coordinate axes.

Mathematically, the set of similar operations belonging to a given class

is generated by the similarity transformation

Rc = RgRcRg (6-1)

If all symmetry operations Rg belonging to the group are used, a set of dis-

tinct operations R will be generated. This is the set belonging to the

class C.

For the cubic group, there are five classes, and the total number of

symnetry operations is

1 + 8 + 3+ 6+ 6 = 24 (6-2)

The symbols A,, A2 , El, TI, T2 are the different irreducible representa-

tions of the cubic group. In order to see what is meant by this, consider a

28



set of polynomials of degree 1. There are, as is well known, 21+1 linearly

independent such polynomials. Suppose these polynomials are represented by

1, 2 ... i ... On in which n = 21+1. If, now, some operation Rg of the

cubic group-and these operations are simple linear substitutions-is applied

to any one of the functions i(x,y,z), the new function will be a polynomial

of x,y,z of the same degree 1; therefore the new function can be written as

a linear combination of the original set of functions. Thus

Rg(oi) = X Mij(Rg)oj (6-3)

and the operation Rg, operating on the set [), can be represented by the

matrix

M(Rg) (6-4)

The dimension of this matrix is clearly (21+1) x (21+1). Also, since there

are 24 operations in the cubic group there will be 24 such matrices, one

corresponding to each operation Rg. This set of matrices is said to be a

representation of the cubic group because the symmetry operations of the group

and the matrix representing the operation can be set into one-to-one corre-

spondence; i.e., if Ri, Rj, and Rk are any three operations such that

RiR j = Rk (6-5a)

and if

Ri M(Ri)

Rj M(Rj)

Rk M(Rk) (6-5b)
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then

M(Ri)M(Rj) M(Rk) (6-5c)

This group of matrices may have one of two possible forms. It is possible

that all the matrices in the set will simultaneously have the form

S_ 00 0

0 0 0

(6-6)

0 0 0

or can be put into it. In this form the non-zero blocks occur along the

diagonal only. If the matrices have or can be put into this form, the group

is said to be reducible; if not, it is said to be irreducible. For example,

for the 3d electron case discussed earlier, I = 2, the linearly independent

functions are xy, yz, zx, x2 -y2 , and 3z2-r2 , so that 24 operations of the

cubic group will generate 24 5-x-5 matrices. Furthermore, each of the 24

matrices will have the form
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3x3 I Q

(6-7)

-4 -

I 2x2

Thus the 24 5-x-5 matrices constitute a reducible representation of the cubic

group.

Suppose, now, we consider the group of 24 matrices generated by Rg operat-

ing on the set xy, yz, and zx. The matrices will be 3-x-3, as shown earlier.

It will be seen that all the matrices cannot be partitioned into the form

(6-6). The next question is: By taking a suitable linearly independent,

linear combination of xy, yz, and zx, is it possible to generate a set of

matrices, all of which will have one of the forms in (6-8)?

lx 1

2x2 I 0
lxl(6-8)

S xl

Group theory guarantees us that this is impossible. The set of numbers ob-

tained by taking the diagonal sum of the representative matrices will always
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be identical to the set T2 .

The symbols A,, A2 , El, T1 , and T2 stand for a set of matrices that are

in one-to-one correspondence with the symmetry operations of the cubic group.

These five sets of 24 matrices are irreducible in that the matrices of each

set cannot all be put into the form (6-6) simultaneously. Furthermore, group

theory assures us that whatever its dimension, any set of 24 matrices which

represents the cubic group operations can be decomposed or reduced to a linear

combination of the five irreducible representations. For example, for poly-

nomials of degree 100, there will be 201 linearly independent polynomials;

the cubic operations will generate a set of 24 matrices of rank 201. But

the rank of the highest sub-matrix cannot be more than three.

However, if we were to select a set of matrices from the original 24

such that the selected set satisfies the group property, then this set could

possibly be reducible. For example, consider the rotations about a body

diagonal. If the axis of rotation is the (111) direction, then

E: y- y yz - yz M(E) = 1 0 (6-9a)

z--4 z zx zx 0 1

x y xy- yz 0 1 0

yz - zx 3( = 0 0 1 (6-9b)

z-)x zx --- xy 0
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x- z xy-)- zx 00 1

13 M(C z 02)) 1o 0 (6-9c)

z )-y zx ---- 0 1z0i

/1 0 °0

Ml(COM (C(3 ~= M( E) (6-9d)

0 0 l1

The above symmetry operations constitute the group C3, whose character table

is as follows:

E 2C3

A 1 1

E 2 -l

xy,yz,zx 3 0 = A+E

Mathematically, this means that if an appropriate linear combination of xy,

yz, and zx is taken, the three matrices can be reduced. As indicated earlier,

the appropriate linear combinations are

fo = xy + yz + zx

f, = -yz + zx

f2 = yz + zx - zxy

C31) fo -4fo

(1) 2 f

c3I f--i -zx + xy - fl f

C3  f 2 - --  +zx + xy - 2yz = - f 1 - f2
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so that

1 -0 0

0(0))1 (6-1o)
0 3 1

0 I 22

(2)
and for C3  we obtain

1 0 0

M (6-11)

3
0 2 -2

Since

1 0 0

M(E) = 0 1 0 (6-9a)

0 0 1

all three matrices can be partitioned as indicated by the dotted lines.

The characters, or the traces, satisfy the vertical and horizontal or-

thogonality relations. Let

X(Ci, F) (6-12)

represent the character, or the trace, of the matrix which represents opera-

tion Rg in class C i for the irreducible representation 1. Then the vertical

orthogonality relation states that

x(ci,r)x(cj,r) G 51j (6-13)

r n(Ci)
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in which G is the order of the group, or the number of symmetry operations of

the group, and n(Ci) represents the number of symmetry operations in class

Ci. For example, if the numbers in the column 3C2 are multiplied by the cor-

responding numbers in 6C4 and added, we find

1.1 + l(-l) + 2(0) + (-l)(1) + (-l)(-l) = 0 (6-14)

On the other hand, taking the sum of the squares of the characters in 3C2 , we

find

1 + 1 + 22 + (_1)2 + (_1)2 = 8 (6-15)

which is 24/3. This orthogonality relation applied to the class E gives

12 + 12 + 22 + 32 + 32 = 24 (6-16)

which states that the sum of the squares of the degrees of the irreducible

representations is equal to the order of the group.

The horizontal orthogonality relation states that

L n(Ci)X(Ci,ra)X(Ci,rp) = G 6a (6-17)

i

For example, if we take the representations A2 and T2 we find

l(l)(3) + 8(l)(O) + 5(i)(-l) + 6 (-l)(1) + 6(-l)(-l) = 0 (6-18)

On the other hand, taking the square of T2 , we find

1.32 + 8.02 + 3(-i)2 + 6(1)2 + 6(-i)2 = 24 (6-19)
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This theorem is important in determining the irreducible components of a re-

ducible representation. Suppose that X(CiD) is the character of the matrix

of an operation in class Ci for some representation D of the cubic group. If

the latter is reducible, its characters are given by the sum of the irreduc-

ible components. Thus, if a(r) represents the number of times the irreducible

representation r is contained in D, then

X(Ci,D) - a(ra) X(Ci, r.) (6-20)

If we multiply this equation by n(Ci)X(Ci,rp) and sum over classes, we obtain

I n(Ci)X(Ci,D)X(Ci,rp) = n(Ci)x(ci,rp)a(ra)X(Ci,ra)

a,i

- I p a( ra) = Ga( rp)

therefore

= r n(Ci) X(Ci,D) X(Ci, r') (6-21)
i

In many instances, the irreducible representations can be determined by in-

spection.

Another important theorem is concerned with the reduction of a product

representation. For example, this problem will arise when we consider the

two- and three-electron cases. Since the wave functions will be products of

wave functions of the individual electrons, we shall be concerned with the

transformation properties of such product functions. The theorem simply

states that
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x(cirpr) = x(ci,ra)x(ci,rp) (6-22)

and the reduction of this is carried out by the recipe stated earlier. This

theorem is useful in determining the condition under which certain integrals

can be expected to vanish. In the calculation of the energy levels, we need

the integrals

f TiV, jdT (6-23)

The perturbation potential is invariant under the symmetry operation, and so

in the case of the cubic group it belongs to the identity representation A,.

Now it can be verified that

A1 Pi = ri (6-24)

where Pi is A,, A2 , El, T1 , or T2 . Furthermore, it can be shown that rirj

for i A j does not contain A,. Now V~j contains 1j but the integral will

contain A1 only if i = j; furthermore, the integral will be automatically

zero if A1 is not contained in the product representation. This, then, tells

us that in the perturbation calculation we need to calculate only those in-

tegrals which connect states belonging to the same representation.

The theorem given in (6-22) is also useful in determining the selection

rules for electric dipole transitions. For this the relevant integral is

f lirjdT (6-25)

in which i and j are the two states involved in the transition. Now r trans-

forms like T1 so that the integral will be zero, unless the product of *i and

(or more precisely, rirj) contains T1 . Using the cubic group character
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table, we find

A2 T, = T2

A2E = E

A2 T2 = T,

ET, = T, + T2

ETa = Tj + T2

A02 = A,

E2  = A, + A2 + E

1 = A, + E + T, + T2

2 = A, + E + T, + T2

TIT2  = A2 + E + T1 + T2  (6-26)

The allowed transitions then are

A2  - T2

E - TI

E - T2

T1 (---- T1

T2 <-4 T2

TI ) T2  (6-27)

We see, then, that the levels E and T2 brought about by the splitting of the

3d levels can give rise to an allowed transition, despite the fact that A1 = 0!

Of course this is true for the cubic group 0, which has no center of

symmetry. For the cubic group Oh, the levels derived from the 3d orbitals be-

38



long to the even (gerade) representations Eg and T2g, whereas r transforms

according to the odd (ungerade) representation T1u, so that integrals of the

form

f * i(Eg) E *j(T2g)
d T

vanish identically and electric dipole transitions are not allowed between

states of these levels.
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VII. THE 3d2 CONFIGURATION

Earlier we indicated that the 3d-electron energy level is split into

levels belonging to the cubic irreducible representations E and T2 . In our

notation henceforth we shall speak of the t2 or the e electron depending upon

whether the electron occupies one of the T2 or E orbitals. Since there are

three T2 and two E orbitals, it is clear that there can be all together

2 x 3 = 6 electrons occupying the T2 orbitals, and 2 x 2 = 4 electrons oc-

cupying the E orbitals. Consequently, we may speak of the t2 and the e sub-

shells of the d-electron shell. As in atomic spectroscopy, we shall con-

sider next the possible electron configuration arising from two equivalent

t2 electrons.

The basic Schroedinger equation

H* = E* (4-1)

we wish to solve is such that

H H, + H 2 +- (7-1)
r12

in which

Hi- V2 + V(ri) + Fc(Xi+yt+Z4_ 2 r (7-2)

Hi--2m

The method of attack is to expand the solution in terms of product functions

2of the two electrons. For the t2 configuration, there are nine product func-

tions obtained by multiplying the set (xy)1 ,(yz) 1 ,(zx) into (xy) 2 ,(yz) 2 ,

(zx)2 . The indices 1 and 2 refer to the two t2 electrons. Earlier, the

40



symmetry properties of the Hamiltonian were exploited to obtain information

about the nature of energy levels and wave functions. The Hamiltonian (7-1)

is invariant under the operations of the cubic group, so that some of the

previous arguments can be used.

However, we note that the Hamiltonian exhibits an additional symmetry

property of being invariant when the indices 1 and 2 are permuted. This

means that the solutions of (4-1) must constitute the basis functions for

the symmetric group S2 . For this group, there are only two operations: the

identity operation, represented by the permutation (1) (2), and the operation

exchanging the indices 1 and 2, represented by (12). Clearly, then, there

are only two irreducible representations, and the character table is as fol-

lows:

(12) (2) Class
(1)(2) (12)

S 1 1

A 1 -1

9 3 =6s + 3A

This table shows that the irreducible representations are one-dimensional,

i.e., the basis functions are such that each transforms into itself or into

its negative upon permutation of the indices 1 and 2. These are the familiar

symmetric and antisymmetric representations. Consider now the effect of

these operations upon the nine product functions:

41



(yz) 1 (yz) 2  (zx) 1 (yz) 2  (xy) 1(yz) 2

(yz) 1(zx) 2 (zx) 1 (zx) 2  (xy) 1(zx) 2 (7-3)

(yz) 1 (xy) 2  (zx) 1 (xy) 2 (xy) 1 (xy) 2

The two permutations are represented by 9-x-9 matrices. The character, or the

trace, is simply equal to the number of functions that are not affected by

the permutations. Consequently for the class (12) the character is 9, since

none of the functions change when left alone. For the permutation (12) only

three functions-(yz) 1 (yz) 2 , (zx) 1 (zx) 2 , and (xy) 1 (xy) 2 -transform into them-

selves. Consequently the character for class (2) is 3, By inspection (there

is no need here to appeal to the general theorem enunciated earlier!) it is

seen that the reducible representation contains six symmetric and three anti-

symmetric irreducible representations. Since these representations are one-

dimensional, the nine functions of (7-3) can be grouped into six symmetric and

three antisymmetric functions. The symmetric functions are

(yz) 1 (yz) 2  (yz) 1 (zx) 2 + (yz) 2 (zx) 1

(zx) 1 (zx) 2  (yz) 1 (xy) 2 + (yz) 2 (xy) 1  (7-4)

(xy) 1 (xy) 2  (zx) 1 (xy) 2 + (zx) 2 (xy)l

and the antisymmetric functions are

(yz)1 (zx) 2 - (yz) 2 (zx)l

(zx)1(xY)2 - (zx) 2 (xY)l (7-5)

(xy) 1 (yz) 2 - (xy) 2 (yz)l
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Next consider transformations induced by the operations of the cubic group.

For (7-4) we shall obtain 24 6-x-6 matrices and for (7-5) 24 3-x-3 matrices.

Our task is to decompose these into a sum of irreducible representations.

The calculation of the characters would be rather tedious if we had to carry

out the linear substitutions mentioned earlier. Fortunately, however, by

using the result

X(Rs) = IX(R) ]2 + X(R2) (7-6a)

and

X(RA) = 7 {[X(R)]e - X(R2) J (7-6b)

the necessary decomposition can be readily carried through (see, for example,

Ref. 12, p. 134). From the cubic character table we have

E 8C3 3C2  6c2 6c4

T2  3 0 -1 1 -1

Th 9 0 1 1 1

X(R2 ) 3 0 3 3 -1

To the characters of 2, we need to add or subtract those of X(R2 ). In so

doing, we note that

E = E

2 = C
C3  C3

2 = E

02

C2  = E

2 2

04 = 2
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giving the set of numbers indicated in the row X(R2 ). Consequently, char-

acters for the symmetric and antisymmetric representations are

E 8cs 3C2 6c' 6c,

S 6 0 2 2 0

A 3 0 -1 -1

so that

S = A, + E + T2  (7-7)

and

A = Tj (7-8)

As a check, we note that

(T2)
2 = A, + E + T, + T2  = S + A (7-9)

According to Paul's principle the overall wave function, including both

orbit and spin, must be antisymmetric in the indices 1 and 2. Therefore if

the orbital function is symmetric, the spin functions must be antisymmetric,

and vice versa. The symmetric and antisymmetric spin functions have spins 1

and 0, respectively. Consequently, we obtain the allowed states

1A, + 1E + 1T2  (7-10a)

and

3T, (7-11a)

in agreement with the result obtained by other procedures.

For future use, we shall restate our results in terms of Young tableaux

(see Refs. 12 and 13). Using this notation we have shown that
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Iu

ED =A, + 1 + '2(7-lob)

= T, 
(7-11b)

We shall need these results to determine the allowed states for the d3 con-

figurat ions.
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VIII. THE 3d3 CONFIGURATION

The aim of this section will be to present a number of arguments to make

the Orgel-Sugano-Tanabe diagram of Cr3+ understandable. As has been pointed

out already, the cubic crystalline electric field will lead to the splitting

of free ion energy levels. The Orgel-Sugano-Tanabe diagrams show how the

energy-level splittings are affected by the strength of the crystalline field,

as shown in Fig. 12.

2 3 4 ,4.50

Cr IV: 3d (3F)4S, F,-1I13 B=918

F (dedy 2 )
2A2

70-

E/B b4 " PfeA
50 E

40 4F2 (de d)
2 F

2 30
p u H- 2171

"G"4p EE

I0

4F 0 1 2 3

Dq/B

Fig. 12. Splitting of states of the §d configuration

by an octahedral field (Ref. 5, Fig. 2).

To develop the qualitative ideas, on the basis of symmetry arguments we shall

first consider the case of weak crystalline fiel,! and then the case of the
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strong crystalline electric field.

To carry out this program we shall make frequent reference to the group

character table and to the reduction of reducibility representations. For

the sake of convenience the group character table, the characters of the re-

ducibility representation, and their irreducible components are presented in

the following cubic character table:

E 8c, 3C2  6cL 6C4

A1  1 1 1 1 1

A2  1 1 1 - -1

E 2 -1 2 0 0

T, 3 0 -i -i 1

T2 3 0 -1 1 -1

P 3 0 -1 - 1T

D 5 -1 1 1 -1 E+T2

F 7 1 -1 -1 -1 A2+Tl+T2

G 9 0 1 1 1 A3+E+T 1 +T2

H 11 -1 -1 -1 1 E+2T,+T2

A2 xA 2  1 1 1 1 1 A1

A2xE 2 -1 2 0 0 E

A 2 x T, 3 0 -1 1 -1 T2

A2 x T2  3 0 -1 -1 1 T,

E x E 4 1 4 0 0 AI+A2 +E

E x T, 6 0 -2 0 0 T1 +T2

E x T2  6 0 -2 0 0 T1+T2

T, x T, 9 0 1 1 1 A1+E+TI+T2

T, x T2  9 0 1 -1 -1 A2+E+T1+T2

T 2 x T2  9 0 1 1 1 A1+E+Tl+T2
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The terms for the 3d3 electron configuration (see, for example, Ref. 12,

p. 423) are 2P, ('D)2, 2F, 2G, 2 H, 4D, and 4F. According to the Atomic Energy

Tables,6 ,1 4 these levels are arranged as follows:

2 F--- -- 36490

2 H ----- 21078

a2D----- 20218

2G ----- 15064

2 ------- 14185

4p ----- 14072

4 F - - - - -0

(The numerical indicates the term value for the lowest J value of the multi-

plet.)

When this 3-electron system is placed in an electric field having cubic

symmetry, the above atomic energy levels will split, as indicated by the

character table. For example, since

F = A 2 + T2 + T

the 4F ground state will split into three levels, as shown in Fig. 13.

The splitting will be similar for other levels. The complete splitting

scheme of the terms arising from the 3d3 configuration is given in Fig.

14.
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Fig. 14. Complete splitting scheme of the terms arising

from the 3d3 configuration.
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Group theory does not give the sequence of terms shown in Fig. 14. However,

provided the constant b4 is positive, detailed calculations of the sequence

can be obtained from pages 13 and 17 of Ref. 15.

The scheme gives an explanation of the left-hand side of the OST diagram.

It should perhaps be noted that Sugano and Tanabe5 have indicated the split-

tings only of states 4 F, 4p, 2 G, and 2 F.

Consider next the right-hand side of Fig. 14. To understand how these

levels came about, let us first recall an earlier remark that the effect of

the cubic crystalline field is to remove the equivalency of some of the d-

electrons. In a spherically symmetric electric field and d-shell can accom-

modate as many as ten equivalent electrons. On the other hand, in a cubic

field six electrons will be affected differently from the remaining four, so

that often the terms t2 -subshell and e-subshell are introduced. The elec-

trons in the t2-subshell will be equivalent to one another, but not to those

in the e-subshell. It is easy to see, then, that the possible electron con-

figurations are

(t2 )
3, (t2)

2 e, t2 (e)
2 , (e)3

The right superscript, as in atomic spectroscopy, represents the number of

electrons with the indicated orbital. For example, t2 (e)
2 means that there

is one electron occupying the t2 level, and two electrons occupying the e

levels, We shall discuss the allowed states associated with each configura-

tion.

Consider first the configuration tj. The Hamiltonian will be invariant

under the permutation of the indices 1, 2, and 3, so that the wave functions
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jmust constitute the basis for the irreducible representations of the symmetric

group S3 . This group consists of six permutations, belonging to three classes

as indicated below:

Classes (l ) (2,1) (3)

Permutation E (12) (123)

(13) (132)
(23)

There are, accordingly, three irreducible representations of degrees 1, 2,

and 1, respectively. These representations will be denoted by the symbols

[3], [2,11, and [13] respectively. The group character table (see, for

example, Ref. 12) is

(13) 3(2,1) 2(3)

131 1 1 1

[2,1] 2 0 -1

[1 3 ] 1 -1 1

tj 27 9 3

The characters of the reducible representation t3 given in this table

are obtained by noting how the three electron wave fur.2tions transform under

permutations of the group S3 . As mentioned earlier, the t2 wave functions

are given by

- (yz)

= (zx)

=(xy)
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The 3-electron wave functions are given by the product of 1-electron wave

function. Since the wave function for each electron can be any one of the

3three functions indicated above, these are 3 = 27 product functions, so that

the character for the identity operation, E, is 27. Consider next the char-

acter for the permutation of class (2,1), and in particular consider the

permutation (12). The character for this operation and consequently for the

class (2,1) is given by the number of functions that are not changed by the

permutation. This will occur if the orbital part for electrons 1 and 2 is

the same. A typical function is, say,

t(1) x t(2) x TN(3

The orbital of electrons 1 and 2 can be one of the three functions, and

electron 3 can also, independently, have any one of the three orbitals. Con-

sequently, the number of product functions remaining unchanged by the per-

mutation (12) is 9, which means that the character for this class is 9. Fin-

ally, the character for class (3) is the number of functions that are not af-

fected by the permutation (123) or (132). Clearly, there are only three such

functions, given by

t(i) x t(2) x (3, (i) x j(2) x (N, (1) x t(2) x Y(3)

and hence the character is 3. Using the theorem enunciated earlier, we find

that

(t 2 )' = 10 [31 + 8 [2,1] + [13]
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or, in terms of Young's tableaux,

(t Z1I] + T +
(10) (8) (l)

The dimensionality of the representation given by each shape is given by the

numbers underneath. The representation [31 or I I I for which the

orbital part is totally symmetric, is forbidden by Pauli's principle. Or to

use the language of tableau calculus, in order for the total wave function

to satisfy Pauli's principle, the tableau representing the spin part must be

the transpose of the orbital part. Furthermore, since the electron has only

two possible spin orientations, the electron spin tableau must not have more

than two rows. Thus, of the three shapes

B~lL
the first one is forbidden for the electron spin, which leaves

I I Iand

as the only allowed orbital tableaux. Now

belongs to 4 A2 of the cubic irreducible representation.
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This can be seen as follows. The tableau represents the totally antisym-

metric space function and is given by

(XY) (XY) 2 (XY) 3

*a = N 8p P[(xy) 1 (yz) 2 (zx) 3 ] = N (yz) 1 (yz) 2 (yz) 3

P
(zx) 1(ZX)2(ZX)3

where

L +1 for an even permutation
5 p=

-1 for an odd permutation

Selecting now one operation out of each class of the cubic group and operating

on the *a' we get:

Operation Result Character

x yN

E: y ENa = *a 1

C3 : (y--- z' Csfla = 'Va 1

x- -x

02: -Y C2*la = *a

/x - y

C2: (y-- x) CL'a = -*a -l
\z ---- z/

04: y---X N C44ra = -'a -i

z- z

These are the characters of the irreducible representation A2 . j
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j The irreducible cubic representations contained in the other tableaux

can be readily obtained as follows. The outer product gives

Now

D belongs to T2

Hbelongs to 3
T,

and furthermore

T 1 + T2  A2 + E + T1 + T2

so that

= 2 E + 2T, + 2T2

Collecting our results, we have shown that the allowed configurations of t2

are

t2 = 4A2 + 2E+ T+2T

This is in agreement with Bethe's result, which is obtained by a very differ-

ent procedure.
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The states for the configuration (t2 )
2e can be obtained easily by noting

that

(t2 )
2  = 3T, + 'A, + 'Ej + 'T2

and by making use of the results for product representations. Thus, the ad-

dition of an e-electron to the state 3T, leads to

(3 T) (E) = 2T, + 2T2 + 4T, + 4 T2

The others are

('A,) (E) - 2 E

('Ej) (E) = 2A + 2A2 + 2 E

(1T2 ) (E) = T, + 2 T2

Carrying through a similar analysis for t2 ( e) we find that

t2 (e)
2  = 4 T, + 2T, + 2 T2 + 2 T, + 2 T2

And finally for e , the single state

3 2
e = E

In summary we have found that the states arising for the weak-field case

are as follows:
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4 A2  

4 T, 4 T2  
2 A, 2 A2  

2 E 2 T 2 T

4F 1 1 1

2p 1

2p 1

2G 1 1 1 1

2(2 D) 2 2

2 H 1 2 1

2 F 1 1 1

Total 1 2 1 1 1 4 5 5

From the strong-field analysis we obtain:

(t 2 ) ' 1 1 1 1

(t2 )
2 e 1 1 1 1 2 2 2

t2 (e)
2  1 2 2

(e)3  1

Total 1 2 1 1 1 4 5 5

The two totals agree, as they should. Each of the states 4A2, 4T2, 2A, and

2 A2 occur only once. These are the states indicated by the straight lines

connecting the left- and right-hand sides of the OST diagram. Since there

are two 4T, states, the associated energy levels are given by the solution of

a 2-x-2 determinant. Furthermore, according to well known results in quantum

mechanics, the energy states of different symmetry do not interact, but those

of the same symmetry tend to repel. Consequently, on the left-hand side,

the two 4T, states should start out parallel to each other, but the separa-
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tion should increase with increasing strength of the crystalline electric

field.

The energy levels for the 2 E, 2T1 , and 
2T2 states are obtained by solv-

ing 4-x-4 (for 2 E) and 5-x-5 (for 2 T, and 2T2 ) determinants.

We shall now analyze the energy levels in greater detail. The term

values for the d3 configuration are given in Ref. 11, pp. 206 and 233 (see

also Ref. 16). These values are:

4 F -15B

4 p 0

2 G -llB + 3C

2P,2 H - 6B + 3C

a2 D 5B + 5C -193B 2 + 8BC + 4C2

2 F 9B + 3C

b2 D 5B + 5C +-T193B 2 + 8BC + 4C2

Comparison of these results with the experimental spectrum given earlier

shows very clearly the inadequacy of even the atomic theory. If the term

values for the 4 F, 4 p, and 2 G states are used, the following numerical

values are obtained:

B = 917.36 cm-1

C = 3678.67 cm'1

and

CS= -= 4.01B

On the other hand, Sugano and Tanabe 5 have used
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j B 918 cm 1

and

C = 4.50

for their analysis.

For the octahedral coordination, the crystalline field energy of the t2

and e orbitals are -4Dq and 6Dq respectively. These values are chosen by

taking the separation of t2 and e to be lODq, with the center of gravity at

zero (or in matrix language, the trace of the cubic field energy matrix is

taken to be zero.) Thus

3E(t 2 ) + 2E(e) = 0

E(e) - E(t 2 = lODq

therefore

E(e) = 6Dq, E(t 2 ) = -4Dq

Then the crystalline field energies for the (t 2 )n (e)3 - n configurations

are given by

E(t n e -n) = (-4Dq)n + (3-n)(6Dq)

so that we obtain:

n Configuration Crystalline Energy

3 (t2 )
3  -12Dq

2 (t 2 ) 2 e - 2Dq

1 t 2 (e) 2  + 8Dq

0 (e) 3  18Dq
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This means that for very large values of Dq (i.e., for a large crystalline

field) the terms arising from the above configurations will cluster about

the values indicated in the last column.
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PART II

X-RAY PRODUCED V2FROM VO+ 2 IN SINGLE CRYSTALS OF ZINC

A14MNIUM SULFATE- ZnO 4 (NH4) 2SO4 61120

by

Robert Borcherts
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Foreword

The purpose of this report is to present the results, to date, of a set

of electron spin resonance experiments on:

(a) VO+ 2 and V+ 2 in single crystals of zinc ammonium sulfate, and

(b) X-ray irradiated VO+ 2 in single crystals of zinc ammonium sulfate,

magnesium ammonium sulfate, and zinc potassium sulfate.

Conclusions

Upon X-ray irradiation of the single crystals containing VO+2 it was

found that the X-ray, or the subsequent energetic electron that it produces,

breaks the VO bond, removing the oxygen from the VO
+2 site and leaving V

+2

behind.

Since the V+ 2 produced by irradiation and the crystalline field surround-

ing it is identical (as far as EPR measurements can determine) to that found

in single crystals of "grown" V+ 2 in zinc ammonium sulfate, the oxygen must

be at a distance so removed that the crystalline field is unaffected by its

presence.

Figure 1 shows the EPR spectrum along the K2 axis for the VO+ 2 crystal,

the irradiated VO+ 2 crystal, and the V+2 crystal, depicting the results

quite vividly.
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I. BACKGROUND

The first successful application of microwave techniques to the study of

the centimeter and millimeter range of energy level separation was by

ZavoiskyI in 1945. Since then the study of electron spin resonance spectra

of various ions in crystalline and non-crystalline solids has made a major

contribution to knowledge in the field of solid state physics.

One ion of particular interest is that of vanadium. The +2, +3, and +4

spin states of V5 1 (abundance 99.76%, I = 7/2) have electronic spins of 3/2,

1, and 1/2 respectively. Consequently the electron spin resonance signature

of each oxidation state is readily recognized-in non-cubic crystalline fields

by the number and angular dependence of the fine structure groups as well as

by the separation of the hyperfine structure, and in cubic crystalline fields

by the separation of the hyperfine structure (see Figs. 2 and 3).

In 1950, Bleaney, Ingram, and Scovil 2 reported on the EPR spectrum of

V+ 2 in ZnSO4 (NH 4 ) 2SO4 .6H 2 0, the same host crystal used in this set of experi-

ments. In this crystal the six water molecules form a distorted octahedron

surrounding the V+2 ion, producing a rhombic crystalline field. As a result

the 2S+l degenerate ground state splits into two spin doublets, Ms = ±3/2 and

Ms = +1/2 respectively, separated by 2D. Applying a magnetic field splits

the remaining degeneracy and application of microwave energy at a frequency

v gives rise to three fine-structure groups at g 2 2, corresponding to the

selection rule AM = ±1. Because of the 7/2 value of the nuclear spin of V5 1 ,

each of the fine-structure groups are composed of eight lines (21+l) with a
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separation of approximately 90 gauss.

In 1958, Zverev and Prokhorov 3 and later Lambe, Ager, and Kikuchi4 reported

on 1+3 in sapphire (oe-A12 03). And in 1960, Lambe and Kikuchi5 found a small

amount of V+4 in A12 03 . They were also able to show that by X-ray irradiation

or gamma irradiation some V+ 2 is produced. Also in 1960, Gerritsen and Lewis
6

and Zverev and Prokhorov7 reported on V+4 in rutile (Ti02 ).

In sapphire six oxygens surround each aluminum site in a distorted octa-

hedron, giving rise to a trigonal crystalline electric field. If v+3 is sub-

stituted for the A1+3 ion, the trigonal component of the crystalline field

splits the T2 energy level into a doublet E and a singlet B. This splitting,

acting through the L.S coupling, causes the ground state to split into a lower

spin singlet Ms = 0 and an upper spin doublet Ms = ±1, separated by -10/cm.

An applied magnetic field causes the Ms = ±l level to split and as a result a

forbidden electron spin resonance transition corresponding to AM = +2 can be

observed at a magnetic field of H = hv/2gp. Since the ground state is sepa-

rated by ~l0/cm the relaxation time of this transition is so short that in

order to observe the spin resonance transitions the experiments must be per-

formed at very low temperatures-approximately 4.20K. If the temperature is

too low, less than 2°K, the Ms = ±1 state becomes so depopulated that no sig-

nal is observed at all!

In rutile, six oxygen atoms surround the Ti+4 site in a distorted octa-

hedron, producing an orthorhombic crystalline electric field. Since V+4 has

only one 3d electron and thus a spin of 1/2, when it is substituted for the

Ti+ 4 ion only one fine structure group corresponding to a AM = ±1 transition

8



is observed. However, if tetragonal symmetry is present the relaxation time

may be long or short depending on whether or not the tetragonal symmetry is

"squashed" or "elongated" (see Fig. 3). For rutile the tetragonal field ap-

pears to be elongated since the experiment has to be performed at liquid nitro-

gen temperatures (770K) in order to observe the EPR spectrum. The observed

hyperfine spectra is very anisotropic, having a separation of 157 gauss along

the z-axis and 35 gauss and 48 gauss along the x- and y-axes respectively.

The g-values (gx = 1.915; gy = 1.913; gz = 1.956) reflect the rhombic sym-

metry of the crystalline field.

Although the "valence state" of vanadium in the vanadyl radical VO+ 2 is

also +4, the strong cylindrical crystalline field formed by the vanadium and

the oxygen produces an energy level structure quite different from that of

V+ 4 in a cubic field 8 (see Fig, 3).

The first electron spin resonance spectrum of the vanadyl radical (VO+2 )

was reported by Garifianov and Kozyrev 9 in a frozen aqueous solution and later

by Pake and Sands lO in aqueous, acetone, and ether solutions; by O'Reillyl l

in vanadyl etioporphyrin dissolved in benzene and high viscosity oil; by Faber

and Rogers12 in various adsorbers (charcoal, Dowex-59, IR-4B and IR-00); and

by Roberts, Koski, and Caughey1 3 in some vanadyl porphyrins. As mentioned

above, the VO+ 2 radical produces a very strong cylindrical of axial field so

that it matters little what other kind of field surrounds the VO+2 . This is

evidenced by the similar spectra found by these investigators.9-13 The re-

sults of these investigations are that the g, and g,, values are 1.98-1.99

and 1.88-1.93 respectively, and that there is a hyperfine splitting of 160-

9



200 gauss parallel to the z-axis and of 60-85 gauss perpendicular to the z-

or VO 2-axis. The variation in these values is suggested to be due to the

extent of covalent bonding between the vanadyl ion and the surrounding lig-

andso 12 Because the samples used in all these investigations were either

powders or solutions, -the EPR spectrum, is either an average of the randomly

oriented V0+2 radicals in the frozen or powdered samples (see Fig. 4a), or a

time-averaged spectrum as a result of the motion of the V0+ 2 in solutions.

Thus, because of the need for EPR information on oriented VO+ 2 and be-

cause of the success of Lambe and Kikuchi 5 and Wertz, Auzins, Griffiths, and

Orten1 4 in producing the various oxidation states of vanadium, the experiments

reported here were undertaken. Underlying these immediate reasons is perhaps

a deeper one-that of a systematic study of the solid state chemistry of

vanadium.

10
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II. EXPERIMENTAL METHODS

A. CRYSTAL GROWTH

Single crystals of 0.05, 0.1, 0.5, and 1.0% (vanadium to zinc) concentra-

tions of ZnSO4 (NH4)2SO4.6H2 0 were grown from a water solution into which re-

agent grade ZnS04'7H20, (NH4 )2 SO4 and V0SO4 .2H20 were added in the prescribed

amounts. Light blue crystals up to 3-4 mm in length were usually obtainable

in 1-2 days. Zinc potassium sulfate and magnesium ammonium sulfate crystals

containing 1.0% VO+2 were also grown by this method.

In contrast to the ease of growing the vanadyl crystals, the growth of

the 1.0% and 2.0% vanadous ammonium sulfate crystals required a greater degree

of skill due to the rapidity at which V+ 2 becomes oxidized. Cathodic reduc-

tion of the vanadyl solution, in which the cathode and the anode are separated

by a porcelain cup, followed by evaporation at 50 C in a carbon dioxide atmos-

phere was the method used to grow these crystals,

B, CRYSTAL STRUCTURE AND ORIENTATION

Figure 5 shows the two molecules contained in the unit cell of

MgS04 (NH4)2SO4 .6H20. The position of the atoms is taken from the data in

Wykcoff.15 The octahedron of water molecules surrounding the divalent metal

ions forms the crystalline electric field which determines the constants in

the spin Hamiltonian. That is, the data obtained from paramagnetic ions

placed in these positions directly reflects the environment and the interac-

tion of the electrons with the environment. Measurements of EPR experiments

12
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can be made with great precision so that very minute changes in the environ-

ment can be observed.

As shown in Fig. 6 these double sulfates or Tutton salts grow with well

recognized faces16 so that orientation of the crystal in the cavity becomes

a task accomplished with relative ease. Figure 6 also shows the device used

for positioning the 22-inch quartz rod to the crystal to within a degree or

two of the desired orientation. After placing the crystal in the cavity the

final adjustments of the crystal orientation are made by moving the quartz

rod until the desired spin resonance spectrum is observed on the recorder, The

experimental data that can be recorded are: (a) the magnetic field at reso-

nance, (b) the angle of the magnetic field to some axis, (c) the frequency of

the klystron, (d) the first derivative of the line shape as presented on the

recorder, and (e) the angle that the c-axis makes with the horizontal. The

angle that the c-axis of the crystal makes with the horizontal is observed

through the optical hole in the side of the cavity by means of a surveyors

transit,

C. EPR EXPERIMENTAL SETUP

Electron spin resonance spectra and magnetic field measurements were made

at room temperature with a Varian V-4500 EPR Spectrometer and a Varian Model

F-8 Fluxmeter connected to a Berkeley 7580 Transfer Oscillator and a Berkeley

7370 Universal Eput and Timer. Both X- and K-band klystrons (-10 kmc and

-24 kmc respectively) were used, The K-band klystron was needed for the V+ 2

measurements since the zero field splitting is 9.8 kmc. 5 Both cavities were

a silvered ceramic so that 100 kc modulation of the DC magnetic field could

14
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be employed. X-ray irradiations were made for approximately 15 minutes in

the white beam of a GE X-ray machine operated at 45 kvp-4O ma with the crys-

tal approximately 1 inch fiom the tungsten target. Magnetic field measure-

ments could be made accurate to 0,2 gauss and 0.l gauss for K- and X-band

frequencies respectively. Klystron frequency measurements of 5 Mc/sec and

05 Mc/sec accuracy for K- and X-bands respectively gives a lower limit of

±0.0005 on the error of the g-valueo

16



III. EXPERIMENTAL RESULTS

A. VO+ 2 CRYSTALS

From the spin resonance measurements of the V0 + 2 crystals the following

axial spin Hamiltonian* constants were calculated:

Present Work Other Results (Powder)

g11 = 1.9328 ± 5 1.94713 1.94811 1.88 - 1.9312

g = 1.9802 ± 5 1.988 1.987 1.978 - 1.989

JAI = 0.01824 ± 2/cm 0.0158 0.0159 0.0158 - 0.0184

IBI = 0.007162 ± 5/cm 0.0054 0.0052 0.0061 - 0.0075

IQ' I = 0.00024 ± 5/cm

The V0+2 radical enters the crystal with the V0+ 2 axis in one of four different

directions, as shown in Fig. 7. A pair of V0+ 2 axes lying in the same plane

belong to the same type of sites (the crystal has two molecules per unit cell),

and the lower concentration position (10%) has slightly different g-values

(g, = 1.9314 ± 5, gL = 1.9812 ± 5) and a line width of 4.7 gauss compared with

5.7 gauss for the 40% position. No variation in intensity ratio was noted for

crystals of different VO/Zn concentration.

Aaxial = g11 HzSz+ gLO [HxSx+HySy ] + AIzSz

+ (IxSx+IySy) + Q' [I2 - 1(1+1)]

17



FOUR EQUIVALENT VO'2 POSITIONS
IN A REGULAR OCTAHEDRON, THE VOZ'

AXES POINT TOWARDS THE CENTROIDS
OF THE TRIANGULAR FACES

TWO POSITIONS OF VO2 AXES IN
A DISTORTED OCTAHEDRON. THE MOST
POPULATED POSITION IS WHERE THE
VO l AXIS POINTS TOWARD THE
CENTROID OF THE TRIANGLE WITH
THE LARGEST AREA.

II

Fig. 7.Experimental positions of axes in VO(NqH 4)2(S04)2.6H20 (1% VO/Zn).
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The angle between the plane formed by the KjK3 axis (see Fig. 7) and the

c-axis was found to be 0.60 ± 0.30. A similar measurement for the V+ 2 crys-

tals could not be made since it was found that the yz-plane of the one site

made an angle of e60 with the yz-axis of the other site.

1. Discussion

The axial spin Hamiltonian constants (ga, g1 , JAI, IBI, and IQ' I) ob-

tained from measurements at 0 and 900 fit the angular part between 0 and 900

to a remarkable degree, as shown in Table I. In Fig. 7 the z-axis for the

analysis of the data is the VO+ 2 axis; in fact, it is the location of the z-

axis and the result of g1 > g,, (see Fig. 3) that indicates the vanadyl rad-

ical is present as an entity in the crystal and that its axis is oriented in

the directions shown.

One can attempt to explain why there are four directions for the VO
+2

radical and only two molecules per unit cell on the following basis. The VO+ 2

ion is expected to enter an octahedron of water molecules in one of four

equivalent directions (see Fig. 8) in order to achieve minimum energy. How-

ever, in the Tutton crystal the water molecules do not form a regular octa-

hedron or even one with axial symmetry, but rather one with considerable

rhombic asymmetry. This is seen from the X-ray data and from the V+ 2 EPR

data presented in Section III-C. This rhombic symmetry makes the four posi-

tions of the VO+ 2 ion non-equivalent and ordered in energy. That is, one of

the positions (40% - see Fig. 7) is energetically more favorable, another

(10% - see Fig. 7) is energetically less favorable, and the remaining two

positions are so energetically unfavorable that the small population of these
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positions are unobservable by EPR techniques. The assignment of a 10% posi-

tion and a 40% position to one of the two types of sites can be made by look-

ing at the positions of the V0+ 2 ions in the water octahedra and noting the

energetically favored position. This assignment is then not arbitrary to the

extent that the X-ray data are assumed to be correct and that the VO+ 2 ion

distorts the water octahedra a negligible amount.

One interesting result lies in the value of Q J. Though evaluated at

90° where its effect is of the order of one gauss, the term involving IQ'I

increases to 4 gauss at 60'. And since the difference between calculated and

experimental values, as shown by Table I, is of the order of one gauss, this

value for Q' I should be quite close to being correct. Now IQ' I is related

to the quadrupole moment of the nucleus, Q, by the relation

3eQ 62V

41(I+l) 6z
2

where

aV~ ~ eZ~ < 1/r3z2 )crystal >electron

Evaluating this expression for V
51 , (eQ = 0.2 x 10-24 cm2)18

--62V a + < 1/r3 >e= 5 x 1022/cm3Z2)C rystal electron =3x1

The value of < 1/r 3 >, if evaluated by the expression

< 1/r
3 > = b

2 4
5
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where

b = (A-B)/3

and

Y = Pn/PnI

is 1.3 x 102 5/cm3. Thus it appears as if (62 V/6z2 ) c r y s t a l is of opposite sign

to < 1/r 3 > and equal in magnitude to three places!

Another interesting experimental result is the splitting of each of the

resonances into five separate resonances when the magnetic field is in the

direction of the tetragonal axis of the surrounding water molecules (see Fig.

9). This splitting, approximately 4 gauss, may provide some information on

the molecular orbital wave function of the vanadyl ion and the surrounding

water molecules.

B. VO+ 2 POWDER

The EPR spectrum obtained from the powder formed by crushing the VO+ 2

crystals gives the same qualitative spectrum (see Fig. 4a) that is reported

in Refs. 9-13. One should be able to explain this spectrum quantitatively

from the spin Hamiltonian constants of the single crystal. Since the result-

ing crystal spectrum shows only axial symmetry, the spectrum is dependent

only on 9, the angle between the magnetic field and the VO+ 2 axis. Thus, for

a given magnetic field, only those crystals or crystallites whose VO+ 2 axes

are at an angle 9 to the magnetic field such that H = im(@) will contribute
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I

to the absorption.* Because of the axial symmetry, the number lying at this

angle is proportional to the solid angle sin@ dg. Thus the number of VO
+2

ions contributing to paramagnetic resonance between magnetic field H and

H+dH is

-7/2

x sing d
d7/2(g)

where the sum is over the eight values of I, the nuclear spin.

Figure 4b shows a plot of such an equation evaluated for the spin Hamil-

tonian parameters for a single crystal containing VO+ 2 . Note that in this

figure the experimental curve is the first derivative of the absorption curve

and that it shows the effect of the finite width of the resonances. The

sharp peaking of the calculated curve corresponds to those VO+ 2 oriented at

90' and corresponds also to a (cos) " l dependence. From the powder spectrum,

r hv K B2  (A F m2
- g m - +K/ (I+l) -

m2 A'B) (!9-. sin2 cos 2 9 + 2 (QI)2 sin2gcos21

2ge 2 Ho \K \g 2  K5 5

"~ ~ ~ A? g ,) sin 49 (B 4

x A2Beg m[4-1(I+l) - 8m2 - 1] - (Q')(

x [21(I+l) - 2m - 1]m

where

Keg 2  = g~AIeCos 2 @ + g2B2 sin2 o

g2 = gcos2
9 + g2,sin2

i

Ho = hv/gp
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the separation of the two extreme peaks corresponds to 71AI/g,,P, and if one

neglects the quadrupole contribution, the separation of the two extreme lines

in the central part of the spectrum is 71BI/gII so that JAI, IBI, g\, and gL

can be obtained from a powder sample-to the accuracy limited by the width

of the peaks.

C. V+ 2 AND IRRADIATED VO+2 CRYSTALS

Operation at K-band frequerr ies gave the following values for the

rhombic spin Hamiltonian constants (see Appendix B):

V+ 2 (Grown) V+2 (Irradiated VO+ 2 ) V+ 2 (Reference 2)

gz = 1.9718 ± 5 1.9719 ± 5 1.951 ± 2

gx = gy =  1.9750 ± 5 1.9745 ± 5

IDI = 0.15603 ± 5/cm 0.15609 ± 5 0.158 ± lo

SEl = 0.02297 ± 5/cm 0.02303 ± 5 0.049 ± 40

JAI = 0.008270 ± 5/cm 0.008270 ± 5/cm 0.0088

** = 2" ± 3.00 30 ± 1.0" 20

*e = 20.50 ± 0.50 20.50 0.50 220

For the V+2 produced by X-ray irradiation in the three different Tutton salts,

the following rhombic spin Hamiltonian constans were calculated:

*a and * locate the z-axis with respect to the ac-plane and the c-axis (see

Fig. 7).
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Zn(NH4) 2(S04) 2 '6H2 0 Mg(NH 4 ) 2(S0 4) 2 "6H2 0 ZnK2(S0 4) 2 "6H2 0

gz = 1.9718 ± 5 1.9720 ± 5 1.9722 ± 5

gx = gy = 1.9745 ± 5 1.9733 ± 5 1.9750 ± 5

IDI = 0.15609 ± 5/cm 0.15795 + 5 (+1.2%) 0.15246 ± 5 (-2.3%)

JEJ = 0.02303 ± 5/cm 0.02456 4 5 (-6.6%) 0.02746 ± 5 (+19.2%)

JAI = 0.008270 ± 5/cm 0.008270 ± 5/cm 0.008270 ± 5/cm

* = 30 ± 10 10 ± 10 110 ± 20

ce = 20.50 ± 0.50 20.00 + 0.50 14.70 ± 0.5°

The angle that the KjK 3 plane makes with the c-axis could not be determined

since the zy-plane of the one site makes an angle of 6' with the zy-plane of

the other site.

1. Discussion

As seen by the close agreement of the V+ 2 (grown) and V+ 2 (irradiated

VO+ 2) spin Hamiltonian constants, and the angle Ct, one can assume that when

the oxygen moves away from the VO+ 2 site leaving V+ 2 behind, it is removed

far enough so that its influence on the crystalline field is no longer felt.

This is also implied by the data on the irradiated VO+2 in the Tutton salts

where Mg is substituted for Zni and K for NH4 . That is, these ions, though

several angstroms away from the V+ 2 site an its associated octahedron of

water molecules, distort the octahedron by an amount that can be measured by

the changes in the values of IDI, JEI, u, and 4.*

*In experiments on Cu+2 in various 'iatton salts, Bleaney, Penrose and Plump-

ton19 noticed that the changes in the monovalent ion influence the angles

a and * to a great extent. They also noticed large changes in the g-values

(-1.0%) which were not observed in the present set of experiments.
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If one performs a general coordinate rotation on the spin Hamiltonian

for rhombic symmetry (in order to diagonalize the Zeeman term-Appendix A),

it is seen that only when the magnetic field is along the x-, y-, or z-axes

do the cross terms become zero, simplifying the spectrum and enabling one to

make measurements that can be used to determine the spin Hamiltonian con-

stants, For this reason no attempt was made to measure the angular part of

the spectrum, An illustration of the effect of this mixing can be seen in

Fig, 10. Note that in both the x- and y-directions the mixing and the result-

ing spread of the spectrum from the second site is so complete that it is al-

most unobservable.

The IDI value can be calculated from the data along the z-axis and the

SEl value from that along the x- or y-axis. However, the plane of the zy-

axis from the one site does not coincide with that from the second site. For

this reason the center part of the spectrum in Fig. 1 showing the magnetic

field along the K2 -axis is not a "pure" spectrum. The K2 -axis is approxi-

mately 50 from the x-axis of each of the two sites.

Note that the value of JEl reported by Bleaney, Ingram and Scovil2 is

almost twice the value found in these experiments. Since they used the in-

formation along the z-direction to evaluate both IDI and JEl, and JEl enters

as a second-order effect along this direction, it is thought that their

value is not as correct as the value reported here,
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IV. FURTHER STUDY

The additional structure of the EPR absorption lines shown in Fig. 9

might yield some information about its origin if attacked with double res-

onance (ENDOR) techniques.

Furthermore, with ENDOR techniques the size of the quadrupole interac-

tion, which may be present to some extent as suggested by EPR experiments,

can be more accurately determined.

Since second-order effects indicate that A and D have the same sign, a

low temperature experiment to indicate the relative intensity of the high and

low field transitions should determine the absolute sign of D and thus A.

The growing of both V+ + and VO+ + in the same crystal, though the ini-

tial attempt has been unsuccessful, would serve as a very precise indicator

that the environment of the V+ + (grown) and the V (produced by X-ray ir-

radiation) are identical.

Similar experiments should be carried out to determine the optical ab-

sorption spectrum for determination of the spin orbit coupling constant % and

to measure the production of V+ + (irradiated) as a function of the radiation

dose to the crystal.
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APPENDIX A

CALCULATION OF ANGULAR VARIATION OF EPR RESONANCE IN RHOMBIC FIELD

In this appendix we wish to obtain formulae so that evaluation of the

constants in the rhombic spin Hamiltonian can be made from experimental data.

We start with the general rhombic spin Hamiltonian

i S(S2 _ 1
rhombic - O[gzHzSz + gxHxSx + gyHySy] + D[S - s(s+)]

+ E(S )+AIzSz + BSxIx + CSyzy + Q'[II - 1(I+1)]

+ Q"CI x - IY]

and proceed to diagonalize the Hamiltonian in the Zeeman term and subsequently

treat the off-diagonal elements as perturbations.

1. FINE STRUCTURE TERM

Since we would like to have gxHxSx+gyHySy+gzHzSz = gSzH we proceed to

make a coordinate transformation with the new set of coordinates x' y' z' re-

lated to x y z by the Eulerian angles 0, 0, and 4,

Y

51y

X,



then S,, S, and S' are related by the following:

Sx  (cos @ cos * - sin @ sin * cos 0% - (cos 9 sin

+ sin 9 cos cos O)S + sin 9 sin S'

Sy= (sin 9 cos * + cos Q sin * cos -)Sx (sin @ sin

+ Cos @ Cos os o)S - cos @ sin S'

Sz  = sin 0 sin /S + sin cos */ $9 + cos 0 S,'

Now if

Hx  H sin e cos 5

Hy= H sin 8 sin

Hz = H cos 8

and if we require

cos Q = -(gy/gL sin 5

sin 9 = (gx/gL) cos 5

sin 0 = (gj/g) sin e

cos = (gz/g)cos e

where

2 = g2cos2 + gysin 25

g2 = g 2 cos2  + g
2 Sin

2 8

then

gzHzSz + gxHxSx + gyHySy = gHSz

Thus the Zeeman term is diagonalized,

The axial and rhombic field terms become, respectively,
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The diagonal terms of the fine structure part involving Sz, S2z, and S+S_+

S.S evaluated for the states IS Ms > with the selection rule M - M-1 yields

AEo  - gPHoM + (M - 1) g2 - 1Cs2E - f sin2

The non-diagonal terms, i.e., the terms involving (S+)2, (S,)2, (S-Sz+

SzS-) and (S+Sz+SzS+), can be evaluated by second-order perturbation theory

(there are no first-order terms), give the following correction to the rhombic

fine structure term:

hs(s+l) -24m(m- ) -9 g- L (g2COS25-gsin2g 24 sin 2e cos2 9

2gPH0  _L g4 x

+ E2sin 2 8 sin 22 + L sin% + -1 (gxxc°S 2(
2 g2  2g2 g 2

g )si + Cos ]2  L2E gxgg cos sin 2

2. HYPERFINE TERM

In attempting to carry out a similar procedure on the rhombic hyperfine

terms the results become extremely complicated. Since the experimental re-

sults indicate little, if any, rhombic symmetry in the hyperfine terms for

VO+ + and none for V++, we will assume that. B = C and Q" = 0; ie., we have

AIzSz + B(IxSx+IySy) + Q"[II - I(I+l) ] + ynH I

Here we perform a rotation on the nuclear spin as we did previously on

the electron spin, with the difference that where the rotation matrix for the

angle was
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1 0 0

0 cos -sin

o sing Cos

it now becomes (for Ix, Iy and Iz):

1 0 0-C B.

coB -csn
0 B2 sin A Cos

K K

where K is defined by setting the dterminant of this matrix equal to unity,

i.e., K(2 = A2cos20+B2sin20. Since we have chosen axial symmetry in the hyper-

fine term we may arbitrarily choose * = 0. The hyperfine term then becomes

! ! ! ! AB~

AIzSz + B(IxSx+TySy) = KIzSz + BSxIx + ;- Syy

+ i -}( B:2  sin E cos 8+ S VzK g2

The first term is the only one which is diagonal in M,, m, and with the

section rules M + M-l, Am = 0 its contribution to the separation of energy

levels is Km. Evaluating the other terms by second-order perturbation theory

(neglecting the terms of order Km with respect to gpH), we obtain

B 2 (A2 + [I(I +l)-m_] + B2 (2)A( -

3. QUADRUPOLE TERM

Since the quadrupole term Q' [Iz - I(I+1)] transforms similarly to the
3

fine structure part, one can quickly obtain the quadrupole contribution to the
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difference in energy levels as

() (L)2 Eg sin 2 ecos 2e [41(I+l) 8m2 - 1]

g292  2K(M-1)

(Q,)2 g- 2 sin4e [21(I+l) - 2m2 - 1]

- ~~ y 9g-) 8K(M..l)[1(+)-2a-]

These are also obtained by second-order perturbation theory and then by

applying the selection rules M - M-1, Am = 0. Although there is a diagonal

contribution of the quadrupole part to the energy level of the form

Q cos2 m2 + L sin2 o [I(I+l) - M2 ] - I(I+l)

it is the same for each value of M, so that the selection rule Am = 0 results

in cancellation of this term.

36



I
I

APPENDIX B

EXACT ENERGY LEVEL CALCULATIONS FOR V+ 2 ALONG

x-, y-, AND z-AXES FOR RHOMBIC FIELD

Given the rhombic spin Hamiltonian with axial hyperfine term

ombic = H-.S-- + D[S2 - 1 S(S+l) ] + E(Sx-Sy) + I.A.S

3

we obtain for the fine structure term for V+ 2 (S = 3/2) and for iparallel

to z-axis

gzPHSz + D[S2 -S(S + I s + ]

Degenerate perturbation calculations lead to the following secular deter-

minant:

M= -3/2 -1/2 1/2 3/2

" gzH+D

-- 2 3E

1 - g,H-D
2 -q 11

1 i .5E H- PH-D

2 
-E I gz H'D

3 l E 2gz6H+D2 -

This determinant may be solved for the following energy levels:
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Sz = 3; = gzPH + 43E2 +(gz6H+D) 2

Sz = 1 + 1gzH + V3E 2 +(gzPH-D)2
1 1

Sz = - ; = gzPH - 43E2 +(gzPH+D) 2

S 2 = - 3; X-1 - 1g zH - 43E2 +(g,,PH-D) 2

For the transitions M - M-1 the change in energy is:

E 3 / 2 , 1 / 2  
=  -X+  = gzPH 3/2 + /3E2+(gzPH3/2+D)2 - /3E2+(gzH 3/2-D)

2

E1/2, 1/2 -= -gzPHl/2 + V3E2+(gzPH1/ 2 -D)2 + I3E2 +(gzPHI/ 2 +D)2

E-12,-3/2 =  Z-Xi gz1Hl2 - 43E2+(gzpH- I2 +D)
2 + i3E 2+(gzM-1/2-D)

2

Making use of a Taylor's expansion for each of the square roots and solv-

ing for the magnetic field (in the major term) yields the following equation

(to fourth order):

(A) H 3/2 hv - 2 (;) + 3E2D L(D1gzP g-P) (gzP)3eH3/2 D gG/2

gZ H3/2

27 E4 D 1
4 (gzp) 5 (H3/2 )4

(B) H,/2  = hv 3E 2  7 1

gZp (g~p) 2 Hl/ 2 L 2
- gzPH1 / 2

(gz)SIH/ 2  gz H 2 zP1/2)1
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(c) / 2  +/ 2

gz z (gzB) 3 g/2  ( 1/2)-

27 E4 D 1 4I (gzp) s H.-/

For the magnetic field parallel to the x-direction, the Zeeman term is

not diagonal. To diagonalize, a coordinate rotation about the y-axis by 900

is performed, resulting in the fine structure spin Hamiltonian

gxBH + D [(S)2 + (SD)2 + S + SS+ ] -

+ E[S,)2 + 1 [(S4) 2 + (S,) 2 - _ +SS - s']

which leads to the following secular determinant:

M = -3/2 -1/2 1/2 3/2

_ _gxPH
3 2  ,- D+E

2 .(3E 2

1gxPH F3D+E

~~12 +(D3E -2

2

1~~~ jgx H x2 2 _(-)
2

3
3 ~jD+E 2xP

2 32 D3
2
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This is the same secular determinant for 4 parallel to the z-axis with gx ) gz,

-(D-3E)/2 - D, and(d+4/2 - E. Thus with these changes, Equations (A), (B),

and (C) also hold for the x-axis. Similarly, for the magnetic field parallel

to the y-axis the following substitutions are made:

gx +gz, -(D+3) - D, and D-E + E

22
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IMn++ ER RESULTS IN A1 1 BV1 COMPOUNDS

by
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I. INTRODUCTION

In earlier reports on ESR measurements in AIIBVI compounds doped with

Mnl,2,3 some interesting results on the ground state splitting factor 3a have

been obtained. Further experiments which have been carried out pertaining

to the cubic ground state splitting will be described here. In Section II

crystal preparation and doping with impurities of CdTe and ZnTe will be con-

sidered. In Section III ESR measurements will be reported.



II. CRYSTAL PREPARATION
4

CdTe and ZnTe crystals, which we have used in our experiments, are made

from the elements in fused silica quartz tubes under vacuum and heated in R-F

furnaces. The following steps are taken in preparing these crystals.

A. PREPARATION OF QUARTZ TUBES

All sample tubes are made of 10 mm (ID) tubing with 4-10 in. of added

tubing. In one end, these tubes are closed in regular round shape, and in

the other are connected to a quartz tube stub (see Fig. 1). The empty part

is 4-10 in. long.

SLAB-, SAMPLE

Fig. 1. Tube preparation.

The tubes are checked for leaks by using the vacuum station and Tesla coil.

Good tubes are cleaned in the following sequence:

(1) Benzene rinse

(2) Acetone rinse

(3) Tapwater rinse with brushing at each stage

(4) Warm concentrated nitric acid bath for 2-4 hr

(5) Deionized water rinse (20 times)

(6) Drip drying by holding the tubes vertically with the open end down

4
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(7) Heating the tube at quartz fusing temperature so that any foreign

impurity remaining on the walls of the quartz tube will be fused

into the quartz

(8) Cooling by air flow

(9) Closing the tube with a cork wrapped with glassine powder paper

(10) Labeling the tube prepared in this fashion with the letter "C," in-

dicating that it is clean for use in crystal preparation.

B. PREPARATION OF SAMPLE

The following steps are taken for weighing the sample.

(1) Recording.-On a special data sheet the elements, properties, and

weight of each are recorded. The base elements such as Cd and Te in CdTe

should have a purity of 99.999%, whereas in the elements of intended impurity

such as Mn or Cu it can be 99.99%.

(2) Treatment of the Elements.-Before weighing Cd and Zn, the metal

bars are cut into pieces less than 10 mm long and are etched with concentrated

nitric acid. Then they are rinsed thoroughly with deionized water, covered

with high-purity metanol, agitated, drained, and allowed to dry on paper

towels. Tellurium is usually used without etching but always in pieces so

that its oxide content will be small.

(3) Weighing of the Elements.-The amount necessary for each element is

calculated by desk calculator up to 7 figures and then, with use of the ele-

ments etched as described in paragraph (2), the weighing is carried out. The

elements belonging to Group IIb (Cd, Zn) must be weighed before those belong-

ing to Group IIIb and Group VI; therefore for CdTe, Mn Cd is weighed first

5



and immediately added to the tube, with tellurium and Mn then weighed and

added to the tube.

(4) Evacuation and Seal-Off of Sample. -The stube in Fig. 1 connects

the tube to a vacuum station which has a fore pump for initial evacuation and

a diffusion pump for further evacuation. After the desired vacuum is achieved

the tube is heated in the "c" region to a length of 1-1-1/2 in. with about

2 in. above the top of the sample so that the walls of the tube collapse com-

pletely for a satisfactory seal-off.

(5) Reaction of Elements in R-F Furnaces.-To ensure a uniform distri-

bution of the impurity ions in the compound the tube is placed vertically in

a graphite cylinder. This graphite cylinder is placed along the axis of a

vertical solenoid of 1/8-in. (ID) copper tube connected to a 20-KW Lepel R-F

generator. The temperature is raised above the crystalline melting point and

held there for several minutes; then the power is turned off, which in 5-10

minutes lowers the temperature to room temperature. The quartz tube of the

sample is then inspected for cracks. If single crystals are desired, the

polycrystalline obtained from the R-F furnace is annealed for several weeks

under a temperature slightly lower than the melting point. The same technique

is used for both ZnTe and CdTe doped with Mn.

6
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III. ESR MEASUREMENTS

The first experiment on AIIBVI compounds, performed by Van Wieringen5 on

ZnS :Mn, raised a great demand for similar ESR experiments. Since then many

other materials with structures close to cubic have been investigated. In

Table I some of the recent ESR results on Mn + + which have been obtained in

our laboratories or by other investigators are given.

TABLE I

Mn++ ESR EXPERIMTAL RESULTS

Crystalline ao Co 3a DMaterial Structure* Coordination (A*)  (A')  g lO.4cm_1  lO.4CM-1 Ref.

M90 R 6 4.24 2.0014 55 0 a

CaO R 6 4.81 2.0009 17.7 0 b

crZnS Z 4 5.43 2.0025 27.7 0 a

Zno W 4 3.24 5.18 2.oo16 6 -216.9 c

ZnSe(P) Z 4 5.67 2.010 - - d

ZnTe z 4 6.12 2.005 88.9 - a

CdS W 4 4.13 6.64 2.003 4.2 8.2 c

CdSe W 4 4.30 7.01 2.005 47 ? a

CdTe Z 4 6.88 2.007 83.1 - a

*W stands for wurtzite (BZnS), R for rock salt (NaC), and Z for zincblende (ZnS)
structure.

Refs.
a. Results of our laboratories.
b. Shuskes, Phys. Rev. 127, 1529 (1962).
c. Dorain, Phys. Rev. 112, 1058 (1958).
d. Matsumara, J. Phys. Soc. Japan 14, 108 (1959).



According to Watanabe
6

3a z (Dq)2  (1)

Dq CC r4/R (2)

where r is the position of an electron with respect to a paramagnetic ion and

R is the position of the nearest neighbors of paramagnetic ions. This theory

was originally developed for ions in an octahedral field produced in crystals

with the structure of NaCl. In Table I, MgO and CaO have this structure, and

if we assume that r 4 of Eq. (2) remains the same for both materials we have:

(a~g)T (RCao) 10 =: a0O 10-B) 10 3.4 (3a)

The experimental results (Table I) gives

=, 7 - 3.1 (3b)\Cacl 17.1

Also

2.0 (4a)

where

=agO 3.03 (4b)
ZnS T

and

E = experimental

T = theoretical

8ISt
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Comparison of aznTe and aznS gives

C n = 0.3512 (5a)

where

a7 _ L T = 3 (5b)

Also

(aZnTe> = 1.07 (6a)

\aCdTe/E

where

//aznTe' b

KaCdTe/T =(

Equations (4a) and (4b) reveal a sharp discrepancy (as much a.s 35%) between

experimental result and theoretical prediction and indicate a great need for

testing other materials having a cubic field. This is why many studies have

been carried out so far. As reflected by Eqs. (5a), (5b), (6a), and (6b) the

discrepancy of 35% in MgO and ZnS is raised by 1000% in the case of ZnS and

ZnTe, and by 75% in the case of ZnTe and CdTe. This demonstrates that al-

though crystalline field theory gives a satisfactory result in light AIIBVI

compounds and especially in octahedral coordination such as CaO and MgO, it

fails to account for heavier compounds belonging to this group, especially

those in tetrahedral coordination. In the following sections the experiments

carried out on ZnTe and CdTe doped with Mn will be considered.

A. EXPERIMENTAL METHOD

The measurements at 300, 78, and 4.2°K were carried out in an X-band

9



(9.2-9.4 kmc/sec) magnetic resonance spectrometer. The ZnTe single crystals

containing 0.1% MnTe were prepared as discussed in Section II-B. Being brittle

and of low resistivity, the ZnTe single crystals are very difficult to cleave

and orient properly. Therefore we had to select many samples and design a

new cavity which permitted the simultaneous and orthogonal rotation of both

DC magnetic field and crystal in the cavity. This cavity is shown in Fig. 2.

The teflon pulley and nylon string are used particularly to facilitate the

rotation of the crystal at low temperatures. With this device we were able

to orient the crystal as well as find the temperature dependence of the ESR

parameters in ZnTe and other similar materials. Considering that cubic ZnS

and ZnTe have exactly the same crystalline structure and that the maximum

splitting between the fine structure components of Mn+ + ESR spectrum in the

cubic ZnS occurs when the magnetic field and (001] axis are coincident,7 one

simply looks for the maximum separation in the spectrum of Mn+ + as a function

of angles @' and $'. These are the angles through which the DC magnetic

field and crystal in the cavity are rotated from arbitrary positions. After

maximum splitting is achieved and hence the location of one of the crystalline

axes is determined further rotations regarding this axis are made to ensure

the correct assignment of the axis. Before making an ESR measurement, it is

of great importance to ensure that the piece of crystal is not polycrystal-

line or twin. Metallurgical microscopes with magnification ranging from 3

to 100 have been used for closer inspection of the faces, which are not shiny.

After this stage X-ray photographs from both powdered and solid pieces of

crystal are made to identify the structure as well as the singularity of the

10
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TENSIONING/
MECHANISM

TEFLON RACE SILK THREAD

Enlarged view of
pulley assembly,
showing sample
In place

Fig. 2. Rotating sample holder and resonance cavity used for measurements.
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crystal. These steps are very important in the measurement of cubic field 3
parameters because the structure of the crystal depends a lot on the method

by which they are prepared. Fortunately, in the case of the tellurides of 3
Zn and Cd the structure is zincblende alone. For the selenides of these el- 3
ements, however, structures of sphalerite (cubic ZnS) and of wurtzite (hex-

agonal ZnS) are observed, and sometimes it is possible for both structures to

be present. A proton magnetometer and Hillard-Packard frequency counter have

been used to obtain the line positions. A hydrazyl marker is used for g meas-

urements due to the fact that in each measurement there might be slight shifts

in klystron frequency, which is an especially important factor for temperature- 3
dependence measurements.

B. EXPERIMENTAL RESULTS

1. ZnTe:Mn

In Fig. 3 the spectrum at 3000 K is shown. At the top is the spectrum

corresponding to 9 = 0, and at the bottom the spectrum corresponding to 9 =

300. (9 is the angle between [Ol] and the DC magnetic field H.) This phe-

nomenon of dependence of intensity on 9 is more pronounced in the materials

with larger a (cubic field splitting parameter) because the farther the fine-

structure components a and P are from the main line y (see Fig. 17 in Section

IV-D) and the higher the temperature, the more destructively they tend to

combine. At 9 = 300 the separation of the fine-structure components reduces 1
nearly to zero; therefore the five transitions corresponding to MS = -3/2, 1
-1/2, 1/2, 3/2, and 5/2 occur at about the same magnetic field. Figures 3a

and 3b clearly manifest the correctness of orientation assignment giver to I
12 1



the crystal.

Zn Te; Mn
3000 K

z
00

0
(f)

(b4 0

MANTI IED

Fi .34n S p crma 0 O: ()9 0 ;()9 3 0

Fop ig.3~~ spectrum at 7*Ki shown: (a) Fig 6, 0n ; the spcr fo 30. (

300 and 9 = 00) are shown in Figs. 7 and 8 respectively.
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Fig. 6.Mn++ ESR spectrum in CdTe single crystals at 78 0 K, 9 =00.
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Fig. 7. Mn++ ESR spectrum in CdTe single crystals at 4.2*K, 0 = 300.

I II

II

Fig. 8. Mn++ ESR spectrum in CdTe single crystals at 4.2*K, 9 - 00.

I
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The superhyper'ine structure corresponding to Cd ions was observed both

in CdS and CdTe by other investigators.1

17



IV. THEORY

A. GENERAL HAMILTONIAN OF Mn+ +

To explain the spectra of Mn++ shown in Figs. 3-8 we should obtain a

relation between (1) the DC magnetic field which is measured experimentally,

and (2) the electron spin magnetic quantum number M, the nuclear magnetic

quantum number m, the polar angle 9, and the azimuthal angle $. Such a rela-

tion is self-evident only if one derives it directly from the following total

Hamiltonian of Mn++:

8

t (M++) =  R (7)
a=l

where

S= j (P/2mi-Zeqri) + I e 2 /rij (8)

i=li>J=l

2 = j (aijK' j.... + bijji.si + cijs i.s j) (9)

i,j

4'L

I=  !2r75(rjsi s j - 3r
i j siri J s j) (10)

i>j

4 = (efl/2mc)(i+2si).-H P(L+S)H (11)
i

X =  gNfN 2 p k (r(i-si).I +3ri.siri. l] + L 5(ri)si.I (12)

i=l

18



6 e2Q r-5 [I*2 rj 1) ~(iI 2] ih1 i ) (3

21(21-1) 

w

= z V(rpripi, i) (14)

J=l i=l

-9= -g H._1 (15)

1[Eq. (8)] is the sum of the kinetic energies of electrons; the coul-

omb interaction of the electrons with the nucleus of the ion and each other,

the 7) is the number of electrons around the Mn+ + nucleus; A = Z-2 = 23.

f 2 [Eq. (9)] is the spin orbit interaction. The proportionality con-

stants aij, bij, and cij are in general functions of quantum numbers (ni,li,

mi). The expression aijli.sj, for instance, refers to the energy associated

with the force which the orbital angular momentum of the ith electron exerts

on the spin of the jth electron. In general

Iaiil > aij

It can be shown that 8

. 2  Zeffe2

aii - (16)2m2c2 <r ,>

where r is the position of the electron with respect to the nucleus. cij's

are primarily due to Heisenberg's exchange effect, which appear in the inter-

action terms between the two electrons i and J:

19



Vij = Kij - (l/2-2si'.sJ)JiJ (17)

where

Kij = < ijijIi > = < jiI'V j > (18)

and

Ji = <  i jJ> (19)

Though the dependence of Jij.si.s on the angle between the spins is similar

to that of the mutual potential energy of two magnetic dipoles

r-s(r 2 _i. 4i - 3ai. iJ.r),

they are two entirely different things.

-93 [Eq. (10)] is the magnetic dipole-dipole interaction and it can be

simply derived by finding the magnetic field Hij produced by ith dipole at the

position of jth dipole:

HiJ = VixA(riJ) = -Vix[4ixVi(i/rij)1

= Vx 1 irij

= _1 vix(aixrij) -* x(lixrij)
rr 3

rij ij

r - s 
3 l.rlJija-Vi. irij+riJ.vi i.ijiriJ.3ai + 3rJ'i a irijij - -.. . .. . . +

and

=j -5.H 2 r(rji.4i-3ai-ripiairi
3_JH = riJ ij= " = "_ _rJ)

20 I



Let

_ - 2psi  and J = 2sJ

Then

iJ 4 2r .(r2 si.sj - 3rij.sirij.sj)
3 r1j ij .. . ..

and

3 - 4p r(rsi's - 3rii
' sirij 'sj) (20)

i>j=l i>j=i

-94 [Eq. (11)] is again the interaction of the magnetic moments of all

ion electrons with the external DC magnetic field, and it is evident that if

the DC magnetic field is not strong enough to decouple the angular momenta

of the electrons then the result of interaction on the closed shells is zero.

For the last shell this result is as shown in Eq. (11).

X [Eq. (12)] is exactly like t4, the only difference being that the

total number of Z protons and A-Z neutrons is assumed to be a particle with

angular momentum I at the origin; therefore the contribution of the orbital

angular momentum Ii of the electron is just

i  2DgNpN1./r (21)

where the contribution of the ith electron spin ai is

ai = -2gNONO Ir15[r.2s i.I - 3ri.siri.I - 8 (ri) si.I/3]J (22)

The first part of Eq. (22) is due to dipole-dipole interaction and the second

to the electrons present at origin. Therefore Eq. (23) results (see Fig. 9):
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= I X~a) = ~ 5r~( 1.s)-I+3ri-sriI+8 7 rK5(ri) Si-i

i~l (23)

r NUCLEAR

Sth ELCRNr
1  ANGULAR MOM.

NUCLEUS

Fig. 9. Schematic representation of electron-
nucleus magnetic interaction.

^8 ( Eq. (13)] is the electric quadrupole moment. Consider that the nth

nucleon potential on the ith electron is (see Fig. 10):

and

VNE =i n, ~i
i=l n=l i=l n=l 1=0

ienI [Pnoipo(gni) + Plji'(tni) + P~iP2(gni)+-]

i,n

O V+ V1 +V 2  (24)

where

tni = cos Gni (xiXn+yiYn+ziZn)/riRn (25)

and

P Ii (Rn/ri)' (26)
ni
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Vo Z n = - ze2/r (27)
i,n i

V, : e -- XiXn+YiYn+ZiZn) (28)X~ r Rn

*th 6
EETON*

i th NUCLEON

Rn y

NUCLEUS

Fig. 10. Schematic representation of electron-
nucleon coulomb interaction.

The matrix elements of V1 correspond to the nuclear electric dipole

moment which vanishes, and

V2  = r eienPniP2(tni) = rjeie.4(3ti-l)/2 (29)

i,n i,n

Substituting Eqs. (25) and (26) we have:
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j-,n

3 f ' r 5 e e l f q y Y n z ~ + x y ~ y + y z y ~ + z x~ ~

i,n

-~ ~ (x(yXz n nxiY+Zg)/3]

-5 I n9xfqyy~~fg + 18(xiYiXnyn+ 3r. 2 rR 2]
i,n

= jeien[(ri-3x4)(R-3X ) + (rj-3Y~j)(Rn2-3Yn) + (r~j-3z )(B-3Zg)

i,n

+ 18 (xiyiXnyn+ ***)M

i 5 niX en((r 2-3X2) (R-3Xn2) + (r 2-3Y~j)(Rn-3y2) + (rj-3zf)(Rn-32?n)

+ 18 (xiyiXnyn+ ***M (30)

Consider now9

I en(R~n-3Xn2) = g -1* -3212 (31)

n 1(21-1)1

I enXnyn =Q 1 (IXI y Ixiy) (32)

Thus we obtain:

V2=6 I r?- 1(21-1) 1 1)l
8 (x iIXXI"

(33)[

For all electrons the ei's are the same, ei = -e; therefore Eq. (33) reduces

to:

24I



V2 = V4= + e 2 Q r15 [I( I+l) r2 - 3 (ri.1) 2 ] (34)
21(21-1) i

l\7 [Eq. (14)] describes the effect of the sum of the coulomb potentials

produced by the neighboring ions at the ith electron. In the case of approx-

imation of the closest neighbors in ZnTe and CdTe, this is the sum of the

potentials produced by the four closest Te ions. 7 is discussed in Section

IV-C.

X8 [Eq. (15)] is the direct interaction of the DC magnetic field H and

nuclear spin I with the gyromagnetic ration gN" gN NI.H is considered as a

constant and neglected.

B. SPIN HAMILTONIAN

In case of II-VI compounds and for 3dn ions, > >1 2 +>4 ; there-

fore the ground-state electronic configuration of Mn + + is still 3d5 . The terms

associated with this configuration are:

S,P,D,F,G,H, and I. (35)

One way of studying the effect of different Hamiltonians on these terms

is to transform them into functions of angular momentum operators, L, S, and

I, which facilitates the theoretical calculations considerably and does not

affect the ESR experimental calculations. This transformation is carried out

in Appendix B. The result [Eq. (B-l4) of Appendix B] is:
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S(L,S,I) - + C oKL-S - M[(L.S) 2 + 1 L.S - L*2S* 2 /3]

+ P(L+2S). H - g _NNEI

" {raL*2S.I - 3(L.SL.I+L.IL.S)/2] +_LI- S.-

+ p[(LoI) 2 - _I/2 - L*2 1* 2 /3] + (36)

where

% JL(L+l) ; 45S(S+l) I* 4(I+l)

and K, M, N, p, and K are independent of L, S, I, ML, MS or MI. The energy

of each of the terms of Eq. (35) is calculated in Appendix A. Equations

(A-28) of this appendix give for Mn
++ (3d5)

+ 0.5 for 4F

- 4.0 for 4D

E(3d 5,L2S+',B/C=.5,C) -10A - 7.0 for 4p (37)
C

- 7.50 for 4 G

-17.50 for eS

where A,B,C are Racah's coefficients.

Thus the 8S state lies the lowest; considering Eqs. (36) and (37) one

finds that in the case of Mn++ the elgenvalues for operators including L will

be zerc Thus:

< [ 4C > = 20S.H + S°I + 9 7 (s) - g HoI (38)L ML > .. ..-.
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where

A = -NK

Therefore, for Mn++ in the intermediate crystalline field appropriate to II-

VI compounds such as MgO, ZnS, ZnTe, and CdTe, the spin Hamiltonian-which is

derived from the total Hamiltonian after the latter has been transformed into

functions of orbital and spin angular momenta and then integrated over orbital

angular momenta L-is:

S(S,I)+ HI = S = 2PS.H + AS.I + 07(S) (39)

where

A = -NK

and gNPNH.I is assumed to remain constant. On the basis of the assumptions

made to derive Q(t.in Eqs. (7)-(15), one findsthat:

(1) The gyromagnetic ratio of Mn++ outer shell electronic cloud should

be the same as that of free electrons.

(2) Any difference between electronic spin states Mi(-5/2,...5/2) should

result from 7 (S) and AS.I in Eq. (39).

C. CRYSTALLINE FIELD

The crystalline field in II-VI compounds of zincblende structure can be

obtained from Fig. 11 and Eq. (4o).

V(r) = Z AnrnYnm(,0) (40)

n=O m=-n

Symmetry considerations will reduce the number of terms in Eq. (40).
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A '_

Fig. 11. Schematic representation of crystalline field.

(A is the ion, B is its closest neighbor, and C is its

electron.)

For d electrons one has to consider only expansions up to n 4. No

terms with odd n in a given configuration will contribute in ground-state

splitting, regardless of whether the center of symmetry is present or not.

The term A is a constant shifting all of the levels of a given configuration

by the same amount. Therefore:

Veff = A2 0r
2Y20 + A2 2r

2Y2 2 + A4 0 r
4 Y40 + A4 4Y4 4 + A4-4Y4-4

The choice of z axis parallel to the fourfold rotary reflection axis

S4 facilitates the determination of the coefficients in the above relations.

Furthermore consider that

V(r,9,4) = J n

nm

where

nm = f(r,nm) only

and

= cos 0
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Thus

S4 V(r,@,O) = V(rO+c, 0 + ~

results in

[cos(@+n)] n -m eim(O+/2) = (cos 9)n-m eimo

or

m = o, ±4

Now consider that reality condition requires that

V =V

or each term having the same condition, i.e.,

(A44Y4 4) = AW = A4-4Y4-4

since

44= () 4 Y4 - 4  = Y4 -4 IFJA 4 4  = - 4  (41a)

The presence of reflection planes a requires that

Anm = An.m (41b)

Conditions (41a) and (41b) result in:

(Anm)* = An m  = Anm, (41c)

namely, A.'s are real. In our experiments no axial dependence of the field

on 9 was observed; therefore the field set up by four tellurium ions around

Mn++ electronic cloud is
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V = A40 r
4IY4 0 + (A44/A40)(Y44+Y4-4]

= A4 0 r 4 (35 cos 4 G-30 cos3@+3) + r4A 44 70 sin 49 cos 4  ()12)

Now consider Fig. 12. We have

VA(r,G = 0,= 0) = VB(r,G = T/2,0 0)

or

8r4 A40  = 3A4 or
4 + r4 'J'7 A4 4

01

(A4 4/A40 ) = 5f7

x

Mn (not in scale)

0 Te (not in scale)

Fig. 12. A unit cell of cubic ZnTe single crystal showing a
Mn++ ion surrounded by four Te ions and the reflection planes a.

Therefore

1/2

7(r,9,0) = V = A4 0r 4 [Y4 0+(5/14) (Y 4 4 +Y4 . 4 )] (45)

and Eqs. (B-28) of Appendix B give:
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I
7 rr'n, Lx, , = B + I + z - L- (3L*-1) (44)

In the 8S state of Mn++ , for H parallel to z axis, one finds from Eqs. (39)

and (44) that

< M,nIVSIM,m > - < M-l,mIA M-l,m > = 2PH(M,m) + mA = hvo  = 2PHO

(145)

and

H(M,m) = Ho - mA' A' = A/20 (46)

where

m = nuclear magnetic quantum number.

Equations (45) and (46) indicate that there should be six absorptions only

(see Fig. 13).

-5/2 IAI-3/2 IAI-1/21Al i/21AI 3/21AI 5/21AI

- - -- H
Ho

Fig. 13. Theoretical prediction of Mn++ ESR spectrum.

These absorptions are observed only in powders and we realize that to de-

scribe the spectra shown in Figs. 3-8 a further refinement of theory is neces-

sary. Bleaney and Stevens,I0 after a phenomological argument, conclude that

a more realistic representation of the crystal potential for Mn++ in II-VI

compounds may be written as:
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.7[(r,r')n,L,S] B[L1 + 1 + Z- L*2 (3L* 2 -1)/5]

+ P[s 4 + S4 + S4 - s*2 ( s*2 -1)/_ ] (47)
x y z (S 1/1 (7

Therefore

cubic <0 0 > + i <OI('n > [2/[E(O)-E(n)]
n

gH.S + AS._ + P[S4 + S4 + S4 - S* 2 (3S* 2 -l/5] (8)

Owing to the fact that P is a measure of cubicwhen H = 0 it is called the

zero field splitting factor. BetheII shows that the state 8S5/2 will be split

into 2F7 and 4F under the effect of a tetrahedral field created by the four

closest tellurium ions of Zn, Cd, and Te. To correlate P and AE = 4r 8- 2
7

use is made of T tensors given as:
12 ,13

T = [9(i+l) - q(q±l)] (S±,T~q) (49)

St = Sx ± iSy

T4: 4 4771(16) S+, (50)

Sx = (S4 + S-)/2 Sy = (S+ + S.)/2i (51)

Consider that

x (s + s)4/16 = (s4 + s4)/16 + f(s + .. s3)

S4 (S+ + S_) 4 /16 = (S4 + s!)/16 + h(S3 + -.. 3)
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Then

+ s ) = (s + s) +f' + h' - (T44 + T4 - 4 ) + f" + h"
(52)

Evaluating S+ from Eq. (49) and substituting in Eq. (52) one gets:

X S 2P11' + = g SHj + AD.S + -p lT40 + %/5/14 (T4 4 + T4 -.4 ) (53)c'cubic 5

where

T40 : (35S4 - 5s*2 S2 + 25S 2 - 6s*2 + 3s* ) S* =- (-S+l) (54)

The matrix elements of the 2P[T 40+ 4r5:1 (T4 4 +T4 _4) ]/5 can be found very

easily, and the result is as shown in Table II.

TABLE II

MATRIX ELEMENTS OF 2p [T4 0 + 5 (T4 4+T4 4 )

Mt + 3 +2
2 2 2

1
M 6P 0 0

2

+ _ 0 -9P 3 JP
2

2 0 3J5P 3P2

In the secular equation

ll0ij-bijl = (6P-,) [(-9P-E)(3P-) - 45p 2 ] = o

33



giving

1
2l(+ 5) = 6P, 62 = 6P, r3 = -12P (55)

el and E2 correspond to four eigen functions with energy 6P above the ground

state of the free ion. Thus the situation shown in Fig. 14 results:

4

8 S5 1 (Mn++ free ion) I

\ 2a 12P

Fig. 14. Effects of cubic field on 8 S5 /2 levels.

The splitting of 8S5 /2 state in a tetrahedral field is given by

4r8 - 2 7  18P = 3a (56)

where

a =6P

Substituting for Pin Eqs. (52) and (53), one finds expressions similar to

those given by Bleaney and Stevens and by Lambe et al. 1

CS'

-ubic = gPSH + a[Sx+Sy+S z S (3S*21)/51/6
,cubic = <cubic - SH+

+ AD.S - gONE', (57)

54



or

S

cubic gS.H + AI.S + a[T 4,+NJ9/14 (T 4 4 +T4 - 4 )1/15 (58)

To find the energy corresponding to electronic and nuclear spin levels

we set up the secular equation for fine-structure Hamiltonian f:

S - A.S = gLs._ + a(35S4 - 3oS* 2 S2

f.s. r

+ 25S2 - 6s*2 + 3s*4)/120 + a(S + S4 )/48 (59)

For the DC magnetic field H parallel to one of the principal axes of the cube,

namely the z axis, we will find the matrix elements of

fs (HIIzIIs 4) = geHSz + a(35 Z+25S z30 Z-6S/120 + a( S+S.) /48

(60)

The first and second term are diagonal while the third term is off-diagonal;

therefore

< MIgPHSz + a(35SZ-30S*Z+25SZ-6S/120 + a(s++s-)/481M' >

< < MlgPHSz + a(35S4-30S*2S2 +25S2-6s*2+3 S 4 ) / 12 0 IM ' >

+ < MIa(S +S )/48IM' > = AEM , + BE) m,+4 (61)

with

A = [2M* + a(l4M4-95M+l89)/48]

B = .. a/2 -gPH/2
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The secular equations (determinant) can be constructed from

II(XS -) - II = 0 (62)
f.s. MM' ~~4

Thus

MM 5/2 3/2 1/2 -1/2 -3/2 -5/2

5/2 5C+a/2-E 0 0 0 .. a/2 0

3/2 0 3E-3a/2-E 0 0 0 .f a/2

1/2 0 0 E+a-E 0 0 0

=0

-1/2 0 0 0 -E+a-E 0 0

-3/2 .J a/2 0 0 0 -3e-3a/2-E 0

-5/2 0 "5 a/2 0 0 0 -5E+a/2-E

(63)

The determinant is an equation of 6th power in E. To solve consider

a 0 0 0 y 0
0 0 0 0 0 7
0 0 8 0 0 0

A = = 8X(a- 2 )(1Tj-y 2 ) = 0 (64)
0 0 0 % 0 0
y o o o t 0
0 7 0 0 0 T

giving

El = a+e E2  = a-e

or, provided E >> a,
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- a + 4 + a ) 2 + a a 5 a2 1 8
E3  = 6 +5-4 E- e+a ;+8

2 24a~~5 2( 4a ./
E4  = e - ."(4+a)'+5a2/4 E - 4 - a - 5a2 (65

2 2

2e~a" -2 (65)
E5 = - - +=(e a & 5 2/ -,E - a + 4 ,E - a + r 8 E

+5- a 5a 2
E8 = - 2 -+a - (4E-a) 2+5a 2 /4 -E - - 4e + a -- 8/o

It is obvious that the states M = ±1/2 do not mix and that El and E2 there-

fore belong to M 1/2 and M = -1/2. For other M's one has, provided a/e << 1.

Ef.s.+ 1

2

fs. 3 _ 3 5a 3aEs.(M =+ 3a 36 8 2a + 3 ± 5a2/32EE) 2 2 (66)

fs 5 a 5a 2 a 2
Ef s(M. ± ) = ± 5e- /8e = -5 + 5a /32c

Thus, the energy diagram of spin levels for HIIZ and in the absence of

nuclear spin effect is as shown in Fig. 15 and Table III.

TABLE III

VARIATION OF SEPARATION OF Mn++ ESR FINE-STRUCTURE COMPONETS

AT Q = 0 AS A FUNCTION OF p = gpH/2a -/a

p E-5/2-EF E-3/2-EF E-1/2-EF E1/2-EF E3/2-EF E5/2-EF

0 - 2.00 - 2.00 1.00 1.00 1.00 1.00

1 - 4.71 - 4.62 0.00 2.00 1.71 5.62

2 - 9.59 - 7.57 - 1 3 4.59 10.57

3 - 14.56 - 10.55 - 2 4 7.05 15.55

4 - 19.54 - 13.54 - 3 5 10.54 20.54
5 - 24.53 - 16.53 - 4 6 13.53 25.54

6 - 29.52 - 19.53 - 5 7 16.53 30.52
7 - 34.52 - 22.52 - 6 8 19.52 35.52
10 - 49.52 - 31.51 - 9 11 28.51 50.5

100 -499.5 -301.50 -99 101 298.5 500.5
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M,:-5/2
40-

30-

20-

E (a)

Free Cubic Magnetic -/

5/2-3/2

- 50 I 11
0 2 4 CA 6 8 10

Fig. 15. Energy level scheme of 3d5 SS5/2 (Mn++) in a tetrahedral
field at@0 = 00./
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For the case where H has direction cosines a, P, and 7 with coordinate

axes,

1

gPH.S = gp[HzSz + (H+S_+HS+)] 2e(,Sz+%+S.+%S) (67)

where

2e = gPH and %_ (a± ip)/2 (68)

and the energy levels are
1 4

E±1/I2 =pa + E + rja 3 / 2 ± q a2/-

E+ 3 / 2  - -3pa/2 ± 3E + r 2 a 3 /g2 + qea 2 /e (69)

E±5/2= 5pa/2 ± 5E + rsaS/2 ± q 3 a 2 /c

where

p = [i1- ( 2+ 2+2)] = 1-

q, = -56(7-25)/6

(70)
q2 = 5[1 + 5(22-755)]/32

% = 511 + 6(50-113b)/3]/32

and

r, = -55(196-16355+3125E2 )//144

r2 = 511 + 36(79-6155+112552) ]/128 (71)

rs = -5i1 - 55(113-7058+1075 52)/9]/ 128

D. HYPERFINE SPLITTING

The hyperfine splitting Hamiltonian for a cubic field is:

J(hf.s. = S.A.I = AS.I = Azjz + A(S+I_+S.I+)/2 (72)
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The exact energy to be assigned to each state M,m requires solution of

a 36 x 36 secular equation. An approximate method is to use time-independent

perturbation theory up to a sufficiently high order with respect to the

diagonalized Hamiltonian for HIIZIS 4 .

Let

o = gPHSz (74)

= AZIZ + A(S+I_+S'I+)/2 +c (75)'-rystalline

Then, taking free ion energy as zero, one has:

(0) (1) (2)
Mm M,m +M,m M,m (76)

where

E(O) < M,mIJo(M,m > (77)MEm 
dm

41  <Mm'IM > (78)

)m= I < M'mj llM'm1>12/[E O(m ME-(# ']mf (79)

M'I ,m'

Then the energy associated with each level M,m is given by

EMm(@ = 0) = S. + f.s.

where

.S. (i)  E(2) (80)
(mm + M,m
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f. s. 1
The values of' R are given by Eq. (66) and (i) and E(2) are:

M ~'Mm mM

F( 1) = AM,m (81)

(2) 7MmA IsI2(0) -(0)

EM' m < L j(+I+-+)/2jM,m>jI/E Im EM'mI]

mM'm

=' (~ I S+L-I IM,> < MAS-I M'>)

(X) < mMmS+I.. + S..I+IMm'm>/[41 - ()m82

< ~ M-lmMlS.I+I, (0) (0)
14 ,ij.M-l'ni+ > < m-'~j-~mM>/[EM Jm-< - xn +l

14 mMIS j+Im+l'm-l ><M+l,ni-lIS+I..IM, >/[EMO) EM,'m-

Consider

I..IM,M+l> -[S*
2 _ (Ml)M]1/2[I*2 _ (M+l)M]1/21M,m

S..I+ jM'M > = -S2 M(M-l) ]1/2[1*2 _ ni(M--) ]1/21M..,M+l >

and S.I+ IM+,,Ml > = -S2 (M+l)]M.]1/2[I*2 _ (Ml)M]1/2IM,M > (3

S+I-IM'M> =[S* _ M(M+l) 11/2[1*2 _ in(M-l) 1/21M+l,YM.l >

Consider also

ECO) %L g HM, E(O P' gpH(M-+l) , E(a) -E(0) - gpH (814)
mMm m± 1,9m'-l mM M1YM±l

Substituting Eqs. (82) and (83) in Eq. (84), one finds:
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Ee S* 2Iv1+M) (I*I_2 _2M) _(S*
2 _M2_M) (I*2_xn2+MY]

E, 4 = L gPH gPH j

A [M(I* 2 -m2) - m(S*2 -Mv) + M(I*2 -m2) - m(S*2 -M2) ] (85)

4gPH

e A M[I(II) M 2] _ m[S(S+l) _ M2]}

2gPH

Considering Eqs. (67), (75), (80), (81), and (85) one finds for (HIIZIIS 4):

E5/2 ,m ' E -a + V(4-a) 2 +5a2/4 + 5Am/2 + A2 15(35/4-m2)/2-5m/2]/2gPH
2

Ei/ 2 ,m + a + Am/2 4 A2 [(35/4-m 2 )/2-17m/2]/2gH

E-1/2,M - + a - Am/2 4- A2 [(35/4-m2)/2-l7m/2]/2gH

E - I(+a +a)2+5a2/4 - Am/2 A2 [-3(55/4-mn/2-1m/2]/2gHE 3 / 2 ,m = a -
LA a

_ --E - J(4I-a)2+5a 2/4 - 5A/2 + A -5(35/4-m? ) / 2- 5m/ 2 ]/2gPE5/2,M 2

For a given m there are six energy levels; therefore five absorption transi-

tions will occur, giving rise to five resonance lines corresponding to a

given m and to different M values. The ESR spectrum of Mn+ + clearly shows

this feature (see Fig. 16).

Considering Fig. 16 one notes that associated with each m the spectrum

at @ = C has the form shown in Fig. 17. To identify the M values to which

the lines Ce, P, 7, 8, and X are associated we must find the intensity IM of

each line. This is proportional to magnetic dipole absorption probability;
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Fig. 16. Mn+ + ESR spectrum in ZnS (cubic) at 3000K, 9 = 00.

Fig. 17. Mn + + BSR due to a given m.

and the ratio of intensities of two lines is as follows:
1 5

IM j< M'11EK-rIM >12

M I<M'-lIrK'M'> I (87)

But, from replacement theory, vectors of position and linear momentum can be

substituted by angular momentum operators L or S, namely
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4A A AA A *~* ~2 (84 A r ipr cc LL. L = L* or SS .  (88)

where

A A
s = S +s++t+s_ = (l±i)/2 i= 7

and

IM  < M-ll+sjM > < M,_S+IM-1 > S(S+l) - M(M-l)

IM < M'-llt+S.IM'> < M' I.S+IM'-l> S(S+l) - M'(MW-l)

Thus

15/2:13/2:I1/2:11/2:1-3/2 5:8:9:8:5 (89)

Note also that the separation of the measured magnetic field correspond-

ing to each line with intensity IM, a4'M p for 9 = 0 can be obtained as

follows:

EM,m- EMl,m = gfHM,m + fM,m = gHo =  h vo for all M,m (90)

Thus

EMm-EM-lYm =EM, Ym -EM'-l HM + fM,m = HMI ,m + m
g gp fM, (91)

or

a MM' = -,Mm fMm f = f'I/g (92)

where f' (A,a)'s are given in Eq. (86) and one considers the fact that in
M'm

AIIBvI compounds iaMn++I < JAMh ++I) fM,m must be found up to a2 , i.e.,
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i(he+a) 2 +5a 2 /4 4 4e + a + 5a 2 /16gPH gPH = 2(9)

Substituting Eq. (93) into Eq. (86) one finds sMMs, e.g.,

01/2,5/2 = a5/2 - / - H1/2 = f1/2 - 5/2 (94)

where

f1/2 = E1/2 - E_1 /2 - H1/2

Equations (86) give

E / " E 1 /2  - 2E+mA+A2(35/4-m)/2&H 2E/gp = H /2 (95)

Thus

f 11 = mA' + A 2[(35/4-m2) ]/2H A' = A/ga, a' = a/g

and

f 5 / 2  = mA' + 2a' + A' 2 (35/4-m2+8m)

Therefore

05/2 = -2a' - 2mA' 2 /H

Similarly

C3/2 = 5a'/2 - 5a' 2 /16H - mA' 2 /H

01/2 = 0

Y112 = -5a'/2 - 5a' 2 /16H + mA' 2 /H

0-3/2 = 2a' + 2mA' 2 /H (96)

Considering Eqs. (89) and (96), and also the fact that the two fine-structure

components tend to merge (see Figs. 17 and 18) at higher field one can deter-
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52

a7

Fig. 18. Schematic plot of fine structure of ESR spectrum of
Mn++ in cubic ZnS for m = -5/2 and 5/2.

mine that A and a have opposite signs. According to Watanabe 5 a cc (DC) 2 and

thus A < 0. Since (15a'/21)/(15A'2 /HI) is 8, 28, and 29 for ZnS, CdTe, and

ZnTe respectively, the measured DC magnetic field determines the M to be as-

signed to the lines a, , y, 5, X; e.g., a corresponds to the M giving max-

imum separation, etc. The result (see Fig. 18) is

C M= -/2; 0 5/2; y - 1/2; 5 - -3/2; % - 3/2 (97)

Consider Eqs. (91) and (95), as well as the fact that At < 0 and

H -H =f -f
HM, m M, m M, m M, m

Then

0 m' > m
H /2,m, - H/ = A'(m-m') + A' 2 (m,2-m2)/2Ho (98)L< 0 m' < m

Therefore, the lowest group of five fine-structure components a, P, y, 8,

and X (see Fig. 18) belongs to m = -5/2, where the group at the high-side
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field belongs to m = +5/2.

E. DETERMINATION OF 3a = 4
r - 2

r 7 PARAMETERS

The 8S /2 electronic level of the Mn++ ion is split into two levels, 4Fa

and 2I , due to the presence of a cubic field. This energy difference is

easily obtained from Eq. (96):

3 [Ia(M = -1/2,m = -5/2)1 + jo(M = 3/2,m = 5/2)1]
5

= [j-5a'/2 - 5a',2/16H - 5A' 2 /2HI + jsa'/2 - 5a'2/16H - 5A' 2 /2HI]
5

= 3[1sa'/2 + 5a'2/16H + 5A' 2/2HI + 15a'/2 - 5a' 2 /16H - 5A 2 /2H1]/5 = 3a'

and

3a = gf 3a'(erg), 3a'(gauss), or 3agp (cm-1) (99)' ' hc

F. DETERMINATION OF HYPERFINE SPLITTING CONSTANT A'

Equation (98) gives

H112,512 - H1/25/2 = -5A' A' = -1/5 (H1/2,5/2-H 11/-2) < 0

(100)

A = g1A'(erg) or A'(gauss) or gfA'/hc in (cm-1)
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APPENDIX A

DETERMINATION OF Mn+ + GROUND STATE

The electronic configuration of Mn++ is

ls2 2s2 2p' 3s2 3p' 3d' (A-i)

According to Griffith 16 the relative energy levels of the ion can be obtained

by considering only the last five electrons in the partially filled shell of

3d. The energy terms corresponding to these electrons can be found simply by

the "counting method." This method consists of setting up a table with pos-

sible positive MS and ML values in rows and columns, respectively, with deter-

mining the number of times that each MS occurs for a given ML by constructing

all possible wavefunctions corresponding to ML. In Eq. (A-2) a set of wave

functions of ML = 2 is given.

2 + 2- 1+ -1+ -2+> with ML = 2  and MS = 3/2

12+ 2- 1+ -1+ -2-> with ML = 2 and MS = 1/2

(A-2)
12+ 2- 1+ -1 -2+> with ML = 2  and MS = 1/2

12+ 2- 1- -1+ -2+> with ML = 2  and MS = 1/2

One can, with the same procedure, find that there are nine other wave

functions with MS = 1/2 and two more with MS = 3/2. The result for other ML

values can be obtained much easier; they are given in Table A-I. Among the

sixteen terms in Table A-I the sextet 8S and quartets 4 G, 4 F, 4 D and 4p are

the most responsible terms which account for the observed optical and EPR

49



*1AW

TABLE A-I

MSML TABLE FOR 3d 5 CONFIGURATION

MS Total Number Difference

1/2 3/2 5/2 1/2 3/2 5/2 Energy Terms

6 1 0 0 1 0 0 21

5 2 0 0 1 0 0 2H

4 5 1 0 3 1 0 2 G, 2 G and 4 G

3 8 2 0 3 1 0 2 F, 2 F and 4 F

2 12 3 0 4 1 0 2D,2D,2D and 4D

1 14 4 0 2 1 0 2 P and 4p

0 16 5 1 2 1 1 2 S and 8S

experimental results. According to Racah 1 2 these terms can be calculated

r?" bcue iann 2 1 +1
from the terms of 3d3 because d 5 is an n I  configuration and because the

sextet and quartet terms have the spin S = 1+1/2 and S = 1-1/2. The 3d 2

MsML table (Table A-TI) reveals that for 3d 2 there are five energy terms,

1G, 3 F, 1D, 3p and 'S , (A-3)

whose energies can be obtained by using the diagonal-sum rule. In this way

one finds the sum of the energies of several terms from the relation:

I 5- Eij = 0 P0  (A-4)

where P. is a polynomial of moth power provided

p
M7 -- ny

o=l
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TABLE A-II

MSML TABLE FOR 3d CONFIGURATION

M STotal Number Difference-EegTrm

,-MI 1 0 1 0

4 0 1 0 1 IG

3 1 2 1 1 3 F

2 1 3 0 1 1D

1 2 4 1 1

0 2 5 0 1 Is

with n' the number of electrons in the partially filled shell (n' < 21+1).

Each Pa satisfies the relation

ma

Pa = E E L-Eai+ .... 0 (A-5)
i=l

The coefficient of -E in Eq. (A-5) is the desired diagonal-sum which we

must find. It can be obtained from the relation

ma

I , J i =- J(K, ) (A-6)
i=l

where J(r,%) is the coulomb integral defined as

o0

J(i,j) = X ak(i,j)-Fk(i,j) (A-7)
k--O

Fk is the so-called Slater-Condon parameter which for a pair of electrons

i and j with the same n and I takes the form
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00 00

Fk (i,j) = e 2 f (rk/rk+l) [R,(ji] 2 [R.(J)1 ]r 2r 2 dr dr (A8

and ak (i,J) in this case (same n and 1) can be given as:

ak(i,j) = ck(miL,mi)ck(mj,mj) (A-9)

with

c k(m,m,) F 4,r21 1/ 24 m~ y ( @,)Y (,O)sin @ dgd
km-na1~ 0 0 (A-10)

From the diagonal-sun rule which is described in Eqs. (A-4), (A-,5), and

(A-6) we can write the energies of the terms of 3d 2as follows:

E('-G) =J(2,2) (A-h1a)

E( 3 F)+E(1 G) =J(2,1)+J(i,2) (A-11b)

E('D)+E( 3 F)+E(1 G) =J(2,0)+J(1,1)+J(0,2) (A-11c)

E( 3 P) +E( ) +E(3 F) 4E( 'G) -J( 2, -1)+J( 1,0) +J(0,l) +j(-1,2) (A-lld)

and

E( 'S) 4E( 3 p)+E( ) +E( 3 F) +E( 1 G) = J(2, -2) +J( 1, -1)+J( 0,0) +J( -1,1) +j(-2,2)

(A-lle)

Equations (A-6)-(A-10) reveal that J(i,j)'s of Eqs. (A-11) can be obtained

from the much simpler relation

I I

J(i,j) a ' a 2' = a2kF2k = %OFO + a2F2 + a4F4  (A-12)

k=0 k-0
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In Table A-IIl the integrals J(i,j) of Eqs. (A-li) are given in terms

of the coefficients A, B, and C defined as

A =F 0  4 9F2  (A-13a)

B F2 -5F 4  (A-13b)

C 3 5F4  (A-13c)

TABLE A-III

J(m,m') INTEGRALS IN TERMS OF A, B, AND C

m ml J(M,M')

2 ±2 A +4B +2C

2 ±1 A -2B+ C

2 0 A -4B+ C

1 ±1 A +B +2C

1 0 A +2B+ C

0 0 A+ 4B +3C

Substituting for J(i,j) in Eqs. (A-1l) one finds the relative energy levels

as follows:

E('G) =A + 4B +2C (A-14a)

E(3F) =A - 8B (A-14b)

E('D) =A - 3B + 2C (A-lhc)
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E( 3P) = A+7B (A-14d)

E('S) = A + 14B + 7C (A-14e)

Equations (A-14) reveal that the relative energy levels for the terms with

16
S = n'/2 (n' being the number of electrons) can be express as

E(dn', n+iT(L)] = n'(n'-l)(A-8B)/2 + 3[6 n' - L(L+I)]B/2 (A-15)

and therefore the energy of the triplets of 3d 2 , quartets of 3d 3 , quintets of

3d 4 and sextets of 3d can be found easily, e.g.,

E(d5, 8 S) = IOA - 35B (A-16)

The energies of the quartets of 3d cannot be obtained as easily, it can,

however, be shown that they may be derived from Eqs. (A-14). Consider that

each quartet of d5 has four electrons with a spin and one with P spin. We

construct the wave functions 1(m,m') of the quartet 4F of d5 so that, com-

pared with the wave functions *1(ml.. .m) of the quintet 5D of de

*1(m.. m
e ,d8,5 D) = 12' 2- l' 0+ -l' -2+> (A-17)

it will have the form

j(m1...m5,d5 Y4F) = 0(2,l) = 12+ 2 1 + 0 + - 2 +> . (A-18)

In Eq. (A-18), m(2) stands for the m, of one-electron wave function with P

spin and m'(l) stands for the -m of the extra electron in the quintet 5D of

da configuration. The diagonal elements of O(m,m') can be obtained by relating
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In Table A-III the integrals J(i,j) of Eqs. (A-11) are given in terms

of the coefficients A, B, and C defined as

A = Fo - 49F2  (A-13a)

B = F2 - 5F4  (A-13b)

C 35F4  (A-13c)

TABLE A-III

J(m,m') INTEGRALS IN TERMS OF A, B, AND C

m m' J(m,m')

2 ±2 A + 4B + 2C

2 ±1 A - 2B + C

2 0 A-4B+C

1 ±1 A + B + 2C

1 0 A+2B+C

0 0 A + 4B + 3C

Substituting for J(i,j) in Eqs. (A-li) one finds the relative energy leve.s

as follows:

E( 1 G) = A + 4B + 2C (A-lha)

E( 3 F) A - 8B (A-14b)

E('D) A - 3B + 2C (A-lhc)
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E( 3 P) = A + 7B (A-14d)

E('S) = A + 14B + 7C (A-14e)

Equations (A-14) reveal that the relative energy levels for the terms with

S = n'/2 (n' being the number of electrons) can be express as
16

E(dn' n ' +lT(L)] = n'(n'-l)(A-8B)/2 + 3[6n' - L(L+l)]B/2 (A-15)

and therefore the energy of the triplets of 3d 2 , quartets of 3d 3 , quintets of

3d4 and sextets of 3dS can be found easily, e.g.,

E(d ,S) = 10A - 35B (A-16)

The energies of the quartets of 3ds cannot be obtained as easily, it can,

however, be shown that they may be derived from Eqs. (A-14). Consider that

each quartet of d5 has four electrons with ax spin and one with P spin. We

construct the wave functions 1(m,m') of the quartet 4F of d5 so that, com-

pared with the wave functions w1(m- ... me) of the quintet 5D of de

*1(m.. .m,d
6,5D) = 12+ 2- 1+ 0+ -1+ -2+> , (A-17)

it will have the form

$1 (m
1.. .m5,d5, 4 F) = 01(2,1) = 12+ 2- 1+ 0+ -2+> . (A-18)

In Eq. (A-18), m(2) stands for the m, of one-electron wave function with P

spin and m'(l) stands for the -m of the extra electron in the quintet 5D of

de configuration. The diagonal elements of O(M,m') can be obtained by relating
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them to the corresponding elements of the 5D terms of d4 and d8 configurations.

These terms can be found from the relationl
6

6

E(d8 ,D) = X [J(m',m) - K(m',mX)]

K<X=2

5 5

[ (J(m , in ) - K(m,m%)] + [J(m ,m8 ) - K(m ,m8 )]

K<%=2 K=0 (A-19)

5

= E[O(m,m') ] + J(m,m') - K(m,m') + f(m,m")

K=i

where

2
2k, k 2a

K(m,m') = 5(s,s') b kF - 0 s s (A-2Oa)

k=0

and

f(mKIM%) = J(mK,m) - K(m',mX). (A-20b)

Thus Eq. (A-19) can be rewritten as

5

E(de,5D) = E[O(m,m')] + J(m,m') + f(mK,-m'). (A-21)
K=i

We have also
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5

E(d 5 ,s) = [J( mmk) - K(m'm)

5 5

X f(mK,m2) + Z f(mK Km)

K=1 K<%=3
(A-22)

5 4

Y. f(mK,-m') f(mKm%
)

K=1 K<X=2

5
) f(mK,-m') + E(d4, 5 D)

K=1

A comparison of Eqs. (A-21) and (A-22) gives:

E[O(m,m')] = E(de,5 D) + E(d 4 ,5 D) - E(d8,eS) - J(m,m') (A-23)

Equation (A-23) gives the energy levels associated with the sextet and the

quartets of Mn+ + and Fe+. within a constant which can be found by consider-

ing Eqs. (A-14), (A-16), and (A-23) for the case where ML = m+m' = 0:

E[I(m,m'), ML = 0] = E(d5 ,8S) = C' - E(d2,S) (A-24)

where

C' = E(d-,"S) + E(d 2 ,1S) = IOA - 35B + A + 14B + 7C

= 1A - 21B + 7C . (A-25)

Equations (A-24) and (A-25) reveal that

4d2 2S+.I
EId 5, 4T(L)] 1A - 21B + 7C - E[d, T(L) ] (A-26)
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Substituting from Eqs. (A-14) for E[d2,2 S+lT(L)] we find the relative en-

ergies of the quartets 4 G, 4 F, 4 D and 4p of 3ds configuration

E( 4 G) = lOA - 25B + 5C (A-27a)

E( 4 F) = lOA - 13B + 7C (A-27h)

E( 4 D) = IOA - 18B + 5C (A-27c)

E( 4 P) = 10A - 28B + 7C (A-27d)

The relative energies of these levels for the case B/C = .5 and in units of C

can be computed with the result as

0.5 for 4F (A-28a)

- 4.0 for 4 D (A-28b)

Ed 5, 2S T(L); B/C = .51 - 1A 7.0 for 4P (A-28c)
C

- 7.5 for 4 G (A-28d)

-17.5 for 8S (A-28e)

A careful study of Fig. 4.4, Ref. 16, indicates that only at B/C < .08

do the quartets lie lower compared with the doublets; but even at this region

Hund's Rule does not hold completely, and the 4D is lower than 4F.
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APPENDIX B

REDUCTION OF THE v" ( TO A FUNCTION OF L, S AND I

To derive the spin Hamiltonian Eq. (35), use is made of the replacement

theory:1
7

(c I KJ_ .I JJIK)(a 1Km I _.Iao m) = (Km I _l1 )
L(L+l)

(B-l)

= B(a',e)(n' I LIKm)

where I can represent such vectors as r or p. Thus we can replace the posi-

tion coordinates with angular momentum components as follows:

x - Lx, xy = (LxLy+LyLx)/2, xn n Lx (B-2)

-V2 [Eq. (9)] is already independent of position vector and assuming

that Russel-Saunders coupling holds and that bii >> bij, it will take the

form:

K LS (B-3)

where K is a constant, L is total angular momentum and S is the total spin.

g [Eq. (10) ] is one of the Hamiltonians containing position vectors
3

rij in conjunction with si and s3 . To replace position coordinates with the

components of angular momentum we expand as follows:

4p- 28 r-i[r j(SxSx+SySy+SzS z)  - 3(tSx+TiSy+ Sz)(tSx+iSy+ Sz) ]

i>j

x + Ry +9RZ
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where , and t are the Cartesian coordinates of r
i j and 3

Rx = 4P rij ri jSxSx - y z z y

i>j (B-5) I

cl(i,j) J(L+l)s'si 3 4s-i + (sLy z+LzLy)( S4+SzSy)

- 3[ x x + S s

i>J

Recalling that

-sJ aisajSx piJS, (B-6)

I
by substituting for sisj in Eq. (B-5) one finds:

Rx -- C(i,J)ij (L+I)S2 - 3[4S2 + (LyLz+LzLy)(SY
s z + s z s y )

i>j

- 7- P L3 S2+ .2 (TyLz+Lzy) (SyS +SzSy - L*2 S21(B8I2 y y(B-8)

-- p[(3-_L* 2)S2 + 2(iLx+2Lz)(-iSx+2SySz)]

7 - p[(3,L_* 2 )Sx + 2 (LxSx+6LzLySySz) I + ... j

The result for Ry and Rz can be obtained 
from Rx [Eq. (B-8)] and 3 can be I

expressed as

(LS) + (L.S) - L(L+I)S(S+I)/3] (B-9)

Since,9 [Eq. (11)] is already given in terms of L and S, [Eq. (12)]

4V
will be considered now. Each of the three parts rij(_Li-si) .I, 3ri's i r i .I and

8i5(ri)si>./3 will be treated separately as follows:
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= N'X ( s)' _ N'(L.I - KS.I) (B-10)

5 r

= N2 11 (LxSxLxIx+LxIxLxSx+LxSxLzIz+LzIzLxSx+LxSxLyIy+LyIyLzSz)

3 3
2 3 1( LxSx+LySy+IzSzX LxIx+yIy+LzIz )

+ (LxIX+LyIy+LzIz) (LxXx+LySy+LzSz)]

= - N"[L.S L.I + L.I L.S] (B-II)

2 - - - - ----

= N3  L' 5(ri) si.I = N"' L*2 S (B-12)

5

and finally we have

N N[- (L.S L.I + L.I L.S)] + L.I- S-} (B-13)

where N and a are constants. In the same way, 6 Eq. (13)] can be changed

into a function of L, S and I. The final result is
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S (L,S,I) = t

= K L.S - M[(L.S) 2 + L.S/2 - L*S* 2 /3]

+ (L+2s).H - (B-4)

+ N(a[L*2 S I - 3(L.S L.I+L.I L.S)/2] + L.I - K S.I)

+ p[(L. )2 + L.1/2 - L*I*2 /3]

+ 7

where K, M, N, p, a, P and y are independent of operators L, S, and I, and

-q [Eq. (14)] is to be obtained for each particular crystalline field. ZnTe
7

and CdTe single crystals have cubic structure with each Zn or Cd surrounded

by four tetrahedrally positioned Te ions. The crystalline field appropriate

to this structure is [see Eq. (43)]:

(r,9,0) = A4 0 r4 Y4 0 (9,) + (5/14) 1/2[Y 44 (9,) + Y4-4(9,0)1)

Ao[4_4o/8(55z
4 _50r2z2+ r4) + - 105

=~ ~ ~ ~ ~ ~ A lC4/83z(0r +rr7/1

(B-15)
-4r4cos 2G+r4cos 4G)cos 4 ]

= A4 o0 4 o/8 (35z
4-30r2z2 +3r4) + 45/14 105r4 sin 4g cos 40].

Recalling that

cos 40 = 8 cos 4  -8 cos20 + I

r4sin 4@ = (x2+y2)2  = r4 - 2r2 z2 + z4
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one finds that

r4 sin 4Q cos 4 = x4 + y4 - 6x2y2  (B-16)

Equations (B-15) and (B-16) reveal that

= (A4 o/8)o4 o(35z4-30r2z2+3r4) + 1680 f5/14 C4 4 (x 4 +y4-6x2 y 2 )]
0 - (B-17)

where

(-1)n [2n+l)(n-ImI) ! 1 1/2 ;( n~m = (-1) 2(n+m) /

Thus

C44 =(9/2(8) .!2t) 1/2 (B-18)

and

a = (9/2 ) 1/2 (B-19)

Substituting for an,m in Eq. (B-17) one finds:

U4 = (A 40/8 V )[(35z4-30r2z2+3r4) + 5(x4+y4-6x2y2)]

= (5A4 / 4%I;)(X4+y4+Z4 - 3r4/5). (B-20)

The next step is to transform r4 into a function of angular momentum com-

ponents. Consider that

r4 = x4 + y4 + z4 + 2(x2y2+y2 z2 +z2x2 ) (B-21)

and

X2y2  2

(B-22)
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where

L.yy.+LLLL = 22 1?Iy I (B-23)

and

yLx y + L x = T + 21 - L- q (B-24)

Equations (B-22), (B-23), and (B-24) reveal that

X2 y 2  (2 ;41;AzK-L2 (61x A-2L-2~y (B-25)

The expressions corresponding to y2 z2 and z2 x2 can be obtained from Eq. (B-25)

by proper substitution of x, y, and z. The sum of these expressions which is

needed for evaluating Eq. (B-21) is:

6(x 2y2 +y2 z2 +z 2 x2 ) :=: 6(L 4+L Lz+LzLg)

+ 3(Lz+4+I ) - 2(L +q+z)

(B-26)
- 2 (2L+0~+4)

= 6(44+LL+LL) - (+ +Z)

Now note that

+ LL + LI -- L - (X+4+L 4 ) - ( oZ+L

or

6(LL; + LLyz + LzL) 9[L*4 -(3(+LL+4Z)] (B-27)

Equations (B-20) through (B-27) reveal that
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I

L)= B (I4+TI;+L4 - L *4~ t*2)]

B ; + '4 _ .(< .I )] (B-28)

4 A

= B[ L + I + '4 - - L(L+l) (35L *S+5L-1)

Equation (B-28) is similar to the Bleaney's results for this case and B here

is a constant obtained as a result of transforming eY(rO) into J(L).
7 7

65



REFERENCES

1. Lambe et al., Phys. Rev. 119, 1256 (1960).

2. Azarbayejani et al., Bull. of Am. Phys. Soc. 6, 117 (1961).

3. Kikuchi et al., Suppl. Phys. Soc. Japan 17, 435 (B-i, 1962).

4o Semiconductor Laboratory Procedural Manual (DRM6o-OO169).

5. Van Wieringen, Physica 19, 397 (1953).

6. Watanabe, Prog. of Theoreto Phys. 18, 405 (1957).

7. Matarrese et al., J, Chem. Phys. of Solids 1, 117 (1956).

8. Thomas, Nature 117, 514 (1926).

9, Mack, Rey. of Mod, Phys. 22, 64 (1950).

10. Bleaney and Stevens, Repts. Prog. Phys. 16, 108 (1953).

11. Bethe, Ann. Physik 3, 133 (1929).

12. Racah, Phys. Rev. 62, 438 (1942).

13. AFOSR TN59-220 (1959).

14. deKronig et al., Physica 6, 290 (1939).

15. Hitler, Quantum Theory of Radiation, Oxford, Clarendon Press, p. 180

(1954,).

16. Griffith, The Theory of Transition Metal Ions, Cambridge (1961).

17. Feenberg, notes on Quantum Theory of Angular Momentum, p. 34, Stanford

University Press (1959).

I
1

66 I



PART IV

SOLID STATE INSTRUMENTATION

by

Glenn G. Sherwood*

*Captain, USAF, in Civilian Institutions Programa, AFIT, at The University

of' Michigan.



This research project is concerned with the design and development of

a solid state charged particle dE/dx detector to replace the traditional

gaseous ion chamber. The advantages of the solid state counter over the gas

counter are:

(a) Resolving times of less than 0.1 microsecond due to short collec-

tion times in the semiconductor.

(b) Less scattering of particles out of the beam by multiple coulomb

interactions, and hence greater counting efficiency.

(c) Ionization efficiency which is 10 times greater than that of the

gas counter, and hence some probable improvement in resolution.

(d) Fast rise time, which permits high counting rates and the poss-

ibility of using pulse shaping techniques to discriminate against background

gamma radiation.

Some work on semiconductor dE/dx detectors was done by H. E. Wegner of

Los Alamos Laboratory in 1960. He developed a diffused junction dE/dx de-

tector with a thickness of 50 microns and a diameter of 3/16-in. As Wegner

reported out of six original detectors this was the only one which survived

the difficult grinding and etching process to give a workable thin detector.

However, this one was enough to demonstrate the feasibility and advantages of

semiconductor dE/dx detectors.

Our research project, wherein we are attempting to measure the spatially

dependent fast neutron fission spectra through several types of semi-infinite

media, requires a proton recoil telescope spectrometer which has a resolving
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time of less than 1 microsecond and is relatively insensitive to background

neutrons and gammas. Previous telescopes with gaseous counters had extreme

limitations imposed by the large resolving times, and this restricted their

performance so greatly that experiments with fission sources were virtually

impossible, as explained by Johnson.
1

Our prescription for a possible method of measuring the spectra is shown

in Fig. 1. Here is depicted a proton recoil telescope with a semiconductor

detector preceded by a semiconductor dE/dx detector. The proton recoils in

energy range 1 to 12 Mev must pass the dE/dx detector and stop in the thick

E detector. Only those pulses which pass through both detectors and are hence

in time coincidence are allowed to enter the pulse height analyzer. This re-

duces the large neutron background produced by the Si28 (n,p) and S12 8 (n,a)

reactions as well as betas from the walls of the instrument.

The portion of this telescope spectrometer project covered herein in-

volves the development of the dE/dx detector. Three factors dictate the

size of the thin detector: noise, counting statistics and thickness. The

energy of the protons require a detector of about 25 microns so that 1.5 Mev

protons will pass into the second detector. So that the efficiency can be

kept in the order of magnitude of 108 or greater (corresponding to an energy

resolution of 15-20%) for reasonable counting statistics, the diameter of

the finished detector should be as close to 2 cm as possible. Noise will

limit the achievement of the ultimate resolution and efficiency. Theoret-

ically, the noise of this detector should be about 85 Key if predicted by the

noise analysis of Goulding.2 This would be acceptable because the 12-Mev
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Fig. 1. Block diagram of telescope spectrometer and necessary

circuitry for coincidence counting.

proton deposits about 150 Key in 25 microns of silicon.

In attempting to develop high quality semiconductor detectors the surface

barrier technique appears superior to the diffused junction method as used by

Wegner because:

(a) The surface barrier method does not require excessive heat which

degrades the performance of the completed diode.

(b) The p-n junction diode has a "window" of several microns which de-

grades the energy of slower protons without collecting charge.
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With these advantages in mind work was started in February 1962 to de-

velop these solid state devices.

A 2000 ohm-cm, 500-microsecond, vacuum zone floated N-type silicon, 24

mm in diameter, is waxed into a circular pyrex boat which is in turn waxed

to a flat aluminum plate. The silicon is then cut into discs .055-in. thick

with a high speed diamond impregnated blade on a Di Met No. 120BQ cutoff

machine. The silicon disc is then waxed to a pyrex optical disc 3 in. in

diameter (see Fig. 2). Three small blocks of silicon are waxed 120 degrees

apart, as shown in the figure, and it is the purpose of these blocks to

maintain the parallelism between the face of the silicon crystal and the

pyrex blocks.

Fig. 2. The silicon wafer is shown mounted on a pyrex

polishing disc. The optical glass flat and the iron
flat are used in the lapping process.

Two types of optical lapping flats are used in this process, a 12-in.

iron flat and a 6 -in. glass flat. The iron flats are used with silicon car-

bide abrasive and the pyrex flats with aluminum oxide abrasive. The final

6
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polishing is done with Linde A alumina on Buehler AB Metcloth with the Buehler

polishing wheel. Both iron and pyrex flats are checked periodically to ensure

that they do not loose their flatness.

The silicon crystal is first lapped with No. 400 silicon carbide in water

on the metal flat to remove the silicon damaged by the saw. The crystal is

then lapped with No. 600 silicon carbide and then with No. 1200 aluminum oxide

in water. The polishing blocks are measured regularly during this process

with a micrometer to maintain them at an even height with respect to the back

of the polishing block. In this way the removal of silicon by lapping can be

controlled so that the crystal is ground with parallel surfaces. When the

pits have all been removed by the No. 1200 abrasive, as observed with a metal-

lurgical microscope of power 110, the crystal is transferred to the glass

optical flat and lapped with No. 3200 aluminum oxide. The crystal is then

polished to a mirror finish with the Linde A until all pits and scratches are re-

moved. At this point the surface should have minimum damage (about 1 micron)

but should still exhibit a relatively high surface recombination velocity.

The crystal is then turned over on the 3-in. pyrex flat, polished side

down, and the reverse side of the crystal is lapped and polished in the manner

explained above. The crystal is polished down to 45-micron thickness, with

particular care being taken to insure that the crystal is planar. This can

be controlled by measuring the edges with a microscope.

The crystal is removed from polishing by gentle heating. It is washed

in successive baths of trichloroethylene, alcohol, and distilled water, dried

in a clean glove box, and finally cemented to a lavite type A ring with
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Araldite No. 951 amine-type epoxy (see Fig. 2).

The back of the crystal is protected by sax while the entire crystal

and holder is immersed in an etch bath (nitric acid, hydrofluoric acid, and

acetic acid in volume proportions 2:1:1) for two minutes. After washing in

distilled water, the wax is removed from the back. After 24 hours, 75 micro-

grams/cm2 of gold is evaporated on the front and the same quantity of aluminum

is evaporated on the back. The semiconductor dE/dx detector is allowed to

age for several days and is then completed.

Experimentation with several etches showed that the most controlled etch

producing a chemical polish on the 1/2-micron polished surface of the silicon

was of the above noted composition, maintained at O°C for about 2 minutes.

This procedure removes evenly about 10 microns, leaving a polished surface

which appears to produce the surface barrier required.

The important aspect of this technique is that we have apparently been

able to control the etch rate without any preferential action on the part of

the etch solution. Using this procedure on the face of the silicon crystal

apparently provides the density of fast states necessary for the inversion

layer. With evaporation of a gold layer, the rectifying junction appears to

be complete.

We are still experimenting with back contacts to achieve a stable or

ohmic contact which is free from injection. We have only partially achieved

this because the back contacts still provide some rectifying action. The

tests to show the amount of minority carrier injection'are still inconclusive. j

I
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The latest dE/dx detectors have progressed to the point where we are

now producing detectors 3-cm 2 in finished area, and 30 microns thick, with

stable characteristics over periods of weeks. Resolution for Po2 10 is 5.8%

(see Fig. 3) and the peak noise extends to channels corresponding to about

280 Key. Improvement in the back contact should help to decrease the noise

to the acceptable level of 150 Key. Figure 4 shows the pulse shape versus

bias for Po2 10 alphas.

The dE/dx detector in conjunction with a thick detector is now operating

in a proton recoil test spectrometer with coincidence equipment. This tele-

scope spectrometer, shown in Fig. 5, is being used to help find those sources

of noise which can be removed. (Since tests have just started there are no

conclusive results as yet.) The mechanism shown in Fig. 5 is the telescope,

which operates in a vacuum housing. The front wheel holds the polyethylene

radiators, which are of different thickness. Behind the front wheel is the

dE/dx detector, and behind this detector is the E detector. The rear of the

device holds the motor for positioning the different radiators corresponding

to various parts of the neutron energy spectrum being sampled.

The instrument has been initially tested wli*" a weak Pu-Be source. Fig-

ure 6 shows the response of the dE/'x detector and E detector to recoil pro-

tons. The picture is poor because the count rate is low and a 30-45 second

exposure was necessary. The coincidence counting rate is about 1 per minute.

In January the instrument will be tested with the Michigan Van de Graaff.

Initial results indicate at least partial success with the new semicon-

ductor dE/dx detectors and some success with the telescope. As far as we can

determine no other group has achieved success as yet in producing these solid

state counters.
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Fig. 4. Pulse shape of large area dE/dx detector to Po2 1 0

alphas vs. bias across the detector and 22-meg load resistor.

Voltage is 0, 25, 75, and 150 volts; the leakage current is
over 1 microampere.

Fig. 5. The telescope spectrometer. The detector nearest
to the proton radiator wheel is the dE/dx detector. The

second detector is a semi-conductor E detector.
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Fig. 6. The top line shows the response of the
dE/dx detector and the bottom the E detector to
proton recoils using a Pn-Be source.
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